Regiospecific ring-opening reactions of $\boldsymbol{\beta}$-aziridinyl $\boldsymbol{\alpha}, \boldsymbol{\beta}$-enoates with acids: application to the stereoselective synthesis of a couple of diastereoisomeric (E)-alkene dipeptide isosteres from a single β-aziridinyl α, β-enoate and to the convenient preparation of amino alcohols bearing α, β-unsaturated ester groups

Hirokazu Tamamura,* Masaki Yamashita, Yutaka Nakajima, Kyoko Sakano, Akira Otaka, Hiroaki Ohno, Toshiro Ibuka and Nobutaka Fujii *
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received (in Cambridge) 11th June 1999, Accepted 12 July 1999

Regio- and stereo-selective ring-opening reactions of N-(2,4,6-trimethylphenylsulfonyl) $-\gamma, \delta$-cis- or -trans- γ, δ-epimino (E)- α, β-enoates with acids such as methanesulfonic acid (MSA) or trifluoroacetic acid (TFA) have been found. These ring-opening reactions are useful for the stereoselective synthesis of a couple of diastereomeric (E)-alkene dipeptide isosteres from a single substrate of γ, δ-epimino $(E)-\alpha, \beta$-enoate, and for the convenient preparation of δ-aminated γ-hydroxy α, β-enoates.

Introduction

The potential of (E)-alkene dipeptide isosteres as backbone replacements of amide bonds in peptides has been well documented among various dipeptide isosteres in the past few years. ${ }^{1} \mathrm{We}^{2}$ and others ${ }^{3}$ have recently reported that peptides containing (E)-alkene isosteres can exhibit potent biological activities. In order to facilitate structure-activity relationship studies on such peptide-lead candidates, development of new efficient methodology for the synthesis of (E)-alkene isosteres is needed. Since it has been reported that the stereochemistry at the α-position and the (E)-configuration are important for biological activity, the stereocontrolled synthesis of both isomers of types $\mathbf{2}$ and $\mathbf{4}$ from a single substrate of type $\mathbf{1}$ would
be extremely valuable (Scheme 1). One advantage of such a strategy is that three other stereoisomeric enoates 5, 6, and $\mathbf{7}$ can be convergently transformed into the enoate $\mathbf{1}$ by exposure to a palladium(0)-catalyst (Scheme 1). ${ }^{4}$ We and others reported previously the two synthetic methods for diastereomerically pure (E)-alkene isosteres $\mathbf{2}$ and $\mathbf{8}$ by employing organocoppermediated anti-S $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reactions of β-aziridinyl α, β-enoate $\mathbf{1}^{5}$ and δ-aminated γ-mesyloxy α, β-enoate $\mathbf{9},{ }^{6}$ respectively.
As part of our investigations of peptide scaffold designs related to structure-activity relationship studies, we are particularly interested in ring-opening reactions of enoates of type $\mathbf{1}$ for the preparation of key intermediates $\mathbf{3}$ for the synthesis of dipeptide surrogates 4 . In this paper, we detail the regio- and stereo-specific ring-opening reactions of β-aziridinyl α, β -

${ }^{7}$

9

Scheme $1 \quad \mathrm{R}^{1}, \mathrm{R}^{2}=$ alkyl; Ar = 4-methylphenyl or 2,4,6-trimethylphenyl, Ms = methanesulfonyl.

11

15

10

$12 \mathrm{R}=\mathrm{COCF}_{3}$
$13 R=H$

$17 \mathrm{R}=\mathrm{H}$

17
14

18

19

23

Scheme 2 Reagents: i, $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$; ii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$; iii, 2,2-dimethoxypropane, pyridinium toluene- p-sulfonate; Mts $=2,4,6$-trimethylphenylsulfonyl.
enoates by methanesulfonic acid (MSA) and the stereoselective synthesis of (E)-alkene dipeptide isosteres by treatment of the ring-opened products with organocopper reagents. ${ }^{7}$ In addition, we also report our finding of similar ring-opening reactions by trifluoroacetic acid (TFA) and the application of such reactions to a convenient synthesis of homochiral δ-aminated γ-hydroxy α, β-enoates, such as a versatile building block for sphingosine synthesis.

The focus of this paper deals with regiospecific ringopening reactions of β-aziridinyl α, β-enoates and their applications.

Results and discussion

Ring-opening reactions of N-(2,4,6-trimethylphenylsulfonyl) (Mts)- γ, δ-epimino α, β-enoates with MSA or TFA

Although there exist ample precedents demonstrating that various nucleophiles, ${ }^{8}$ containing acids such as acetic acid, ${ }^{9}$ TFA ${ }^{10}$ and toluene- p-sulfonic acid in aqueous acetone, ${ }^{11}$ attack simple N -activated or inactivated aziridines ${ }^{12}$ at either of two carbon atoms, yielding the corresponding ring-opened products, the practically useful reactions involving γ, δ-epimino α, β-enoates of type $\mathbf{1}$ with MSA or TFA have not been reported heretofore. We initially examined ring-opening reactions by MSA treatment of N-(2,4,6-trimethylphenylsulfonyl) (Mts)protected (and activated) aziridines bearing α, β-unsaturated esters ${ }^{4,5}$ (Scheme 2). Exposure of the N-Mts $-\gamma, \delta-c i s-\gamma, \delta$ epimino (E)- α, β-enoate $\mathbf{1 0}$, which was previously synthesized from l-valine, ${ }^{4}$ to MSA (10 equiv.) in CHCl_{3} at rt for 20 min afforded exclusively δ-aminated γ-mesyloxy α, β-enoate 11 in essentially quantitative yield, presumably via the regioselective
$\mathrm{S}_{\mathrm{N}} 2$ ring-opening reaction at the γ-carbon position. Furthermore, we investigated the feasibility of the ring-opening reactions by TFA treatment. The $c i s-(E)$-enoate $\mathbf{1 0}$ was exposed to TFA at rt for 15 h to afford exclusively the δ-aminated γ-trifluoroacetoxy α, β-enoate 12. Hydrolysis of $\mathbf{1 2}$ and silica gel flash chromatographic purification yielded the δ-aminated γ-hydroxy α, β-enoate 13 in 93% yield based on 10 (Scheme 2). It was found that the MSA-mediated ring-opening reaction proceeded much faster than the reaction involving TFA. In both cases, ring-opened products generated by nucleophilic attack at the α - or δ-carbon position could not be detected. Regiochemical assignments for the mesyl ester 11 and the trifluoroacetate $\mathbf{1 2}$ were readily made by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COSY). The γ, δ-syn stereochemistry of the ring-opened product $\mathbf{1 3}$ was confirmed by transformation of $\mathbf{1 3}$ into the original substrate $\mathbf{1 0}$ using the Mitsunobu conditions. ${ }^{13}$ Since the mesyl compound $\mathbf{1 1}$ was prone to regenerate the original substrate $\mathbf{1 0}$ during silica gel flash chromatographic purification, it could not be isolated in an analytically pure form.

Next, ring-opening of three other stereoisomeric enoates 14, 18 and 19, which were previously synthesized from L-valine, ${ }^{4}$ was investigated. Regiospecific ring-opening was successfully carried out on the trans- (E)-isomer of the aziridine enoate 14 with MSA or TFA treatment in a similar manner, yielding 15 or 17, respectively (the isolated yield of 17 based on 14: 91%). In both cases, ring-opened products generated by nucleophilic attack at the α - or δ-carbon position could not be detected. Regiochemical assignments for the mesyl ester $\mathbf{1 5}$ and the trifluoroacetate 16 were readily made by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY. The γ, δ anti stereochemistry of the ring-opened product 17 was confirmed by transformation of $\mathbf{1 7}$ into the original substrate 14 using the Mitsunobu conditions. ${ }^{13}$ Furthermore, stereo-

Scheme 3 (a) Reagents: i, DIBAL; ii, oxalyl dichloride, DMSO, DIPEA; iii, vinylMgCl; iv, TFA; v, Mts-Cl, $\mathrm{Et}_{3} \mathrm{~N}$; vi, $\mathrm{Ph}_{3} \mathrm{P}$, DEAD; vii, O_{3}, dimethyl sulfide; viii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$; ix, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$; (b) Reagents: i, TFA; ii, Mts-Cl, $\mathrm{Et}_{3} \mathrm{~N}$; iii, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}$; iv, O_{3}, dimethyl sulfide; v, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO} \mathrm{CH}_{2} \mathrm{Bn}$; vi, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$; (c) Reagents: i, Mts-Cl, $\mathrm{Et}_{3} \mathrm{~N}$; ii, HOBt, WSCD, N, O-dimethylhydroxylamine hydrochloride; iii, DIBAL; iv, vinylMgCl; v, $\mathrm{Ph}{ }_{3} \mathrm{P}, \mathrm{DEAD}$; vi, O_{3}, dimethyl sulfide; vii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Bn}$; viii, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$; (d) Reagents: i, vinylMgCl; ii, TFA, $\mathrm{H}_{2} \mathrm{O}$; iii, Mts-Cl, DIPEA; iv, $\mathrm{BnBr}, \mathrm{NaH}$; v, $\mathrm{Ph} \mathrm{P}_{3} \mathrm{P}$, DEAD; vi, O_{3}, dimethyl sulfide; vii, (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CONHMe}, \mathrm{DIPEA}$; viii, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} ;$ ix, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO} 2 \mathrm{Me}$.
chemical assignments for diastereomers $\mathbf{1 3}$ and $\mathbf{1 7}$ were also easily established by conversion to the acetonide derivatives $\mathbf{2 0}$ and 21, respectively. The NOE data by NMR analyses of $\mathbf{2 0}$ and $\mathbf{2 1}$ are in good agreement with their stereochemistry. On the other hand, attempted treatment of the cis-(Z)-enoate 18 and the trans-(Z)-enoate 19 with MSA or TFA failed to afford the desired ring-opened products and, instead, gave complex mixtures containing the γ-butenolactones, 22 and 23, respectively. This clearly demonstrates that a slight difference in the structure of the substituents can significantly change the reaction route. Since the enoates 18 and 19 can be converted
into the enoate $\mathbf{1 0}$ via $\mathrm{Pd}(0)$-catalyzed reactions, ${ }^{4}$ this ringopening reaction incurs no significant problems in terms of its practical use for the preparation of (E)-alkene isosteres, although our methodology is not applicable to the synthesis of (Z)-alkene isosteres.

Synthesis of the other requisite N-Mts- $\gamma, \delta-c i s-\gamma, \delta$-epimino (E)$\boldsymbol{\alpha}, \boldsymbol{\beta}$-enoates (enamides)

As shown in Scheme 3, the diastereomerically pure N-Mts $-\gamma, \delta$ $c i s-\gamma, \delta$-epimino (E-- α, β-enoates (enamides) 31, 36, 44, 54 and

55, which were required for the synthesis of (E)-alkene dipeptide isosteres (amino alcohols), were readily prepared according to the known methods. ${ }^{4,5}$ Boc-d-Phe-OMe 24 was treated successively with diisobutylaluminium hydride (DIBAL), oxalyl dichloride- dimethyl sulfoxide (DMSO)- N, N diisopropylethylamine (DIPEA) and vinylmagnesium chloride to give a separable 6:1 mixture of allyl alcohols 27 and 28. Exposure of $\mathbf{2 7}$ to TFA followed by successive treatments with $\mathrm{Mts}-\mathrm{Cl}$ in the presence of triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, triphenyl-phosphine-diethyl azodicarboxylate (DEAD), ozone, dimethyl sulfide and [(methoxycarbonyl)methylene]triphenylphosphorane afforded a mixture of the ($2 E$)- and ($2 Z$)-enoate 31 and 32. By a palladium(0)-catalyzed reaction, ${ }^{4}$ a mixture of $\mathbf{3 1}$ and $\mathbf{3 2}$ was converted into the cis-(E)-enoate 31 (for details, see Experimental section). Likewise, the allyl alcohol 33, which was previously synthesized, ${ }^{4}$ was treated successively with TFA, $\mathrm{Mts}-\mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Ph}_{3} \mathrm{P}-\mathrm{DEAD}$, ozone, dimethyl sulfide, [(benzyloxycarbonyl)methylene]triphenylphosphorane and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to give the cis-(E)-enoate 36. N^{e}-2-Chlorophenylmethoxycarbonyl (Cl-Z)-protected Lys 37 was also successively treated with Mts-Cl-Et ${ }_{3} \mathrm{~N}$, 1-hydroxybenzotriazole (HOBt)-3-[3-(di-methylamino)propyl]-1-ethylcarbodiimide (WSCD)-N,O-dimethylhydroxylamine hydrochloride, DIBAL, vinylmagnesium chloride, $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{DEAD}$, ozone, dimethyl sulfide, [(benzyloxycarbonyl)methylene]triphenylphosphorane and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to yield the $c i s$ - (E)-enoate 44. N-Boc-((S)-serinal acetonide 45 was successively treated with vinylmagnesium chloride, TFA- $\mathrm{H}_{2} \mathrm{O}$, Mts-Cl-DIPEA, benzyl bromide-sodium hydride and $\mathrm{Ph}_{3} \mathrm{P}-$ DEAD to give a diastereomixture of vinylaziridines $\mathbf{5 2}$ and 53 . Reaction of the mixture of $\mathbf{5 2}$ and $\mathbf{5 3}$ with ozone, dimethyl sulfide, N-methyl(diethylphosphono)acetamide-DIPEA and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave the cis-(E)-enamide 54. Likewise, reaction of the mixture of 52 and 53 with ozone, dimethyl sulfide, [(methoxycarbonyl)methylene]triphenylphosphorane and Pd$\left(\mathrm{PPh}_{3}\right)_{4}$ gave the $c i s$ - (E)-enoate 55. The configuration of the γ - and δ-carbon centers and the (E)-stereochemistry for the double bonds in the above N-Mts- γ, δ-epimino α, β-enoates (enamide) were assigned on the basis of the NOE data and the coupling constants by NMR analyses. ${ }^{5}$

Synthesis of (E)-alkene dipeptide isosteres using the ring-opening reaction with MSA

We examined the feasibility of the stereoselective synthesis of (E)-alkene dipeptide isosteres by treatment of the ring-opened products with organocopper reagents. Treatment of the above mesyl compound 11, which was prepared from the cis- (E) enoate $\mathbf{1 0}$ by the MSA-mediated ring-opening reaction, with $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3}$ (4 equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min yielded the protected (L-amino acid, D-amino acid)-type $(2 S, 5 S)$ dipeptide isostere, Mts-L-Val- $\psi[(E)$-CH=CH]-d-PheOMe, $\mathbf{5 6}$ in 94% yield based on $\mathbf{1 0}$ (diastereoselection > 99:1 from NMR analysis). This reaction occurred by an anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism as shown in Scheme 4. In contrast, an anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction of the cis- (E)-enoate $\mathbf{1 0}$ with $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$ (4 equiv.) in THF at $-78^{\circ} \mathrm{C}$ for 30 min afforded the L,L-type $(2 R, 5 S)$ isostere, Mts-L-Val- $\psi[(E)$-CH=CH $]-\mathrm{L}-\mathrm{Phe}-\mathrm{OMe}, 57$ in 75% yield as shown in Scheme 4. The most important factor of the MSA-mediated ring-opening reactions is the inversion of configuration at the $\mathrm{C}-\gamma$ carbon via an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Thus, cis-(E) enoates lead to syn-(E)-mesyl esters, which are converted into L,D-type isosteres upon treatment with organocopper reagents. On the other hand, $c i s-(E)$-enoates themselves produce l,L-type isosteres with organocopper reagents. In a comparative experiment, the trans-(E)-enoate 14 was treated with MSA to afford the anti- (E)-mesyl compound 15 , which was converted into the l,L-type isostere 57 with the organocopper reagent in 89% yield based on $\mathbf{1 4}$. In contrast, treatment of the trans-(E)-enoate $\mathbf{1 4}$ with the organocopper reagent afforded the L,D-type isostere $\mathbf{5 6}$ in 77% yield. Taken together, two types of
isosteres were stereoselectively synthesized from either the cisor trans-(E)-enoate.

We evaluated the applicability of this synthetic methodology to diverse aziridine cis- (E)-enoates, such as D-amino acidderived aziridines and aziridines bearing other functional groups. In the same manner as described above, the cis- (E) enoate 31, which was derived from D -Phe, afforded the corresponding D,L-type isostere, Mts-D-Phe- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]-$ L-Leu-OMe, 59 or the D,D-type isostere, Mts-D-Phe- $\psi[(E)$ -$\mathrm{CH}=\mathrm{CH}]-\mathrm{D}-\mathrm{Leu}-\mathrm{OMe}, 60$ by treatment with MSA and $\mathrm{Bu}^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3}$ or $\mathrm{Bu}{ }^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$, respectively. The benzyl ester-bearing aziridine 36 gave the corresponding L,D-type isostere, Mts-L-Leu- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]$-d-Phe-OBn, 62 or the L,L-type isostere, Mts-L-Leu- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]$-L-Phe-OBn, 63 in a similar manner using MSA and $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3}$ or $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$, respectively. The cis- (E)-enoate 44 derived from L-lysine, which possesses the $N^{\varepsilon}-(\mathrm{Cl}-\mathrm{Z})$-protected amino group and the benzyl ester group, was also converted into the isostere, Mts-L-Lys(Cl-Z)- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{d}-\mathrm{Ala}-\mathrm{OBn}$, 65 or Mts-L-Lys(Cl-Z)- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{L}-\mathrm{Ala}-\mathrm{OBn}, 66$ by treatment with MSA and $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr} \cdot \mathrm{BF}_{3}$ or $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li}$ $\mathrm{LiBr} \cdot 2 \mathrm{LiCl}$, respectively. The cis- (E)-enamide $\mathbf{5 4}$ derived from L-serine, which possesses the benzyl ether group and the N methyl amide group, afforded the corresponding amide-type isostere, $\mathrm{Mts}-\mathrm{L}-\mathrm{Ser}(O-\mathrm{Bn})-\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{d}-\mathrm{Ala}-\mathrm{NHMe}, \mathbf{6 8}$ or Mts-L-Ser $(O-\mathrm{Bn})-\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{L}-\mathrm{Ala}-\mathrm{NHMe}, 69$ by treatment with MSA and $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr} \cdot \mathrm{BF}_{3}$ or $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot$ $\mathrm{LiBr} \cdot 2 \mathrm{LiCl}$, respectively. These results suggest that this synthetic method is widely applicable to various aziridinyl cis-(E)enoates and enamides. The (E)-geometry of the double bond in the obtained isosteres $56,57,59,60,62,63,65,66,68$ and 69 was assigned on the basis of the coupling constant of the two olefinic protons by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analyses. The absolute configuration of the α-alkylated carbon centers in the above isosteres was well characterized by circular dichroism (CD) measurements. ${ }^{5,6}$

Synthesis of a key intermediate compound for the preparation of
sphingosines using the ring-opening reaction with TFA
The sphingosines are important constituents of cell membranes, which participate in cell recognition phenomena such as growth, differentiation and immune responses. The sphingosines 72 and 73 are long-chain amino alcohols, and there have been many

reports on their syntheses. ${ }^{106,14}$ One important factor in the asymmetric synthesis of D-erythro- and L-threo-sphingosine 72 and 73 is the stereocontrol in the preparation of the 1,2 -amino alcohol. We investigated the feasibility of the stereocontrolled preparation of a key intermediate compound for the sphingosine synthesis using the TFA-mediated ring-opening reaction of a β-aziridinyl α, β-enoate. Exposure of the enoate 55 to TFA at rt for 15 h afforded δ-aminated γ-trifluoroacetoxy α, β-enoate 70 by the regiospecific $\mathrm{S}_{\mathrm{N}} 2$ ring-opening reaction. The following hydrolysis of 70 yielded the δ-aminated γ-hydroxy α, β-enoate 71 in 71% yield based on 55 (Scheme 5). The amino alcohol 71 is a key intermediate compound for the l-threo-sphingosine 73 synthesis, and can be also converted into D-erythro-sphingosine 72 by suitable replacement of the N^{a}-protecting group and inversion of stereochemistry of the γ-hydroxy group using the Mitsunobu reaction. ${ }^{13}$ This result suggests that the TFA-mediated ring-opening reaction is useful for the convenient synthesis of the diastereomerically pure δ-aminated

Scheme 4 Reagents: i, $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$; ii, $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl}^{2} \cdot \mathrm{BF}_{3}$; iii, $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$; iv, $\mathrm{Bu}{ }^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3} ; \mathrm{v}, \mathrm{Bu}{ }^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}$; vi, $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr} \cdot \mathrm{BF}_{3} ;$ vii, $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr} \cdot 2 \mathrm{LiCl}$.

Scheme 5 Reagents and conditions: i, TFA; ii, hydrolysis.
γ-hydroxy α, β-enoates as the key intermediates for several bioactive compounds.

In conclusion, regio- and stereo-specific ring-opening reactions of N-Mts-protected aziridines bearing α, β-unsaturated esters [cis-(E)- and trans-(E)-isomers] by MSA or TFA have been found. The MSA-mediated ring-opening reactions provide a useful approach to the stereoselective synthesis of both L,L-type (or D,D-type) and L,D-type (or D,L-type) (E)-alkene
dipeptide isosteres from a single substrate of either a γ, δ-cis- or -trans- γ, δ-epimino (E)- α, β-unsaturated ester. L,D-Type and D,Ltype (E)-alkene dipeptide isosteres are also of comparable use to L,L-type and D,D-type isosteres in the field of medicinal chemistry. γ, δ-Epimino α, β-unsaturated esters can be easily prepared as a mixture of the cis- $(E)-$, cis- (Z)-, trans- (E) - and trans-(Z)-isomers from the corresponding chiral amino aldehydes. $\operatorname{Pd}(0)$-catalyzed equilibration reactions of various stereomers of γ, δ-epimino α, β-enoates could afford predominantly cis- (E)-isomers in high yields. ${ }^{4}$ Upon treatment with organocopper reagents, these would exclusively provide L,L-type (or D,D-type) (E)-alkene isosteres. Based on the above results, brief MSA treatment of cis- $(E)-\gamma, \delta$-epimino α, β-unsaturated esters, gives γ, δ-syn- δ-aminated γ-mesyloxy (E)- α, β-enoates, which can be converted into L,D-type (or D,L-type) (E)-alkene isosteres via organocopper- BF_{3}-mediated anti- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions. Taken together, the completely stereocontrolled synthetic process for L,L-type, L,D-type, D,D-type and D,L-type (E)-alkene dipeptide isosteres starting from L -amino acid or D -amino acid has been established. Furthermore, the TFA-mediated ringopening reactions of $c i s-(E)$-enoates have provided a useful methodology for the stereoselective synthesis of δ-aminated γ-hydroxy α, β-enoates such as a key intermediate compound for the sphingosine synthesis. Many of the existing method-
ologies for the synthesis of sphingosines are accompanied by difficulties in 1,2-amino alcohol stereocontrol. ${ }^{100,14}$ However, our procedure lacks such stereocontrol problems, since TFAmediated stereoselective ring-opening reactions of β-aziridinyl α, β-enoates are unequivocally related to the stereochemistry of 1,2-amino alcohol construction.

Experimental

General

${ }^{1} \mathrm{H}$ NMR spectra were recorded using a JEOL EX-270 or a Bruker AC 300 spectrometer at 270 or $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ frequency for samples in CDCl_{3}. Chemical shifts are reported in parts per million downfield from internal tetramethylsilane. Nominal (LRMS) and exact mass (HRMS) spectra were recorded on a JEOL JMS-01SG-2 or JMS-HX/HX 110A mass spectrometer. Optical rotations were measured in CHCl_{3} with a JASCO DIP360 digital polarimeter. CD spectra were measured in isooctane (2,2,4-trimethylpentane) at $24^{\circ} \mathrm{C}$ with a JASCO J-720 spectropolarimeter. IR spectra were obtained on a Shimadzu Model IR-400 spectrometer. Mps were measured by a hot stage melting point apparatus and are uncorrected. For flash chromatography, silica gel 60 H (silica gel for thin-layer chromatography, Merck) and Wakogel C-200 (silica gel for column chromatography) were employed.

Reaction of methyl ($2 E, 4 R, 5 S$)-6-methyl-4,5-[N-(2,4,6-trimeth-ylphenylsulfonyl)epiminolhept-2-enoate 10 with MSA in $\mathbf{C H C l}_{3}$

To a stirred solution of the cis-(E)-enoate $\mathbf{1 0}(151 \mathrm{mg}, 0.430$ mmol) in $\mathrm{CHCl}_{3}\left(4.3 \mathrm{~cm}^{3}\right.$) was added dropwise MSA (0.279 $\mathrm{cm}^{3}, 4.30 \mathrm{mmol}$) at rt with stirring, and the stirring was continued for 20 min . The mixture was extracted with EtOAc and the extract was washed successively with 5% citric acid, water, $5 \% \mathrm{NaHCO}_{3}$ and water, and dried over MgSO_{4}. Concentration under reduced pressure gave the crude mesyl compound 11, as a colourless oil (crude), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{d}, J 6.6$, CMe), 0.89 ($3 \mathrm{H}, \mathrm{d}, J 6.6$, CMe), $1.88(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.29(3 \mathrm{H}$, s, CMe), $2.66(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.40(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.71$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.83(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{NH}$), $5.27(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $1.3, \mathrm{CH}=), 6.72(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $6.0, \mathrm{CH}=$) and $6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$; m / z (FAB-LRMS) 448 $\left(\mathrm{MH}^{+}\right), 446,352,254,183,167,119$ and 91 (base peak).

Reaction of methyl ($2 E, 4 R, 5 S$)-6-methyl-4,5-[N-(2,4,6-tri-methylphenylsulfonyl)epimino]hept-2-enoate 10 with TFA

The cis-(E)-enoate $\mathbf{1 0}$ ($108 \mathrm{mg}, 0.306 \mathrm{mmol}$) was dissolved in TFA $\left(1 \mathrm{~cm}^{3}\right)$ at rt and the solution was stirred for 15 h . Concentration under reduced pressure gave a crude product $\mathbf{1 2}$ as an oil. Hydrolysis, and purification by flash chromatography over silica gel with n-hexane-EtOAc (4:1) afforded the hydrolysate $13(106 \mathrm{mg}, 0.236 \mathrm{mmol}, 71 \%$ yield based on $\mathbf{1 0})$ as a crystalline mass.
Compound 12, colourless oil (crude), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 0.89 ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}$), 0.96 ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}$), 1.83 (1 H , $\mathrm{m}, 6-\mathrm{H}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.63(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.49(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.80(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{NH}), 5.64(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $1.7, \mathrm{CH}=)$, $6.57(1 \mathrm{H}$, dd, $J 15.8$ and $5.3, \mathrm{CH}=$) and $6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ (FAB-LRMS) 488 $\left(\mathrm{MNa}^{+}\right), 466\left(\mathrm{MH}^{+}\right), 352,254,183,167,119$ and 91 (base peak).

Compound 13, colourless crystals, mp $157-158^{\circ} \mathrm{C}$ [from n -hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 58.51; H, 7.31; N, 3.73 $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires C, $58.51 ; \mathrm{H}, 7.37 ; \mathrm{N}, 3.79 \%$); $[a]_{\mathrm{D}}^{27}-42.1$ (c 0.569 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.6$, CMe), 0.89 ($3 \mathrm{H}, \mathrm{d}, J 6.9$, CMe), $1.88(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.28(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CMe}), 2.62(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.12(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.69$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.33 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $5.04(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), $5.94(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $1.7, \mathrm{CH}=), 6.68(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and
5.0, $\mathrm{CH}=$) and $6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; m / z$ (FAB-LRMS) 392 $\left(\mathrm{MNa}^{+}\right), 370\left(\mathrm{MH}^{+}\right), 254,183,167,119,91$ (base peak) and 72.

Methyl (2E,4R,5S)-6-methyl-4,5-[N-(2,4,6-trimethylphenyl-sulfonyl)epimino]hept-2-enoate 10 from 13 (confirmation of the γ, δ-threo stereochemistry of 13)
$\mathrm{Ph}_{3} \mathrm{P}(13.4 \mathrm{mg}, 0.0512 \mathrm{mmol})$ and $\operatorname{DEAD}\left(0.0202 \mathrm{~cm}^{3}\right.$ of a 40% solution in toluene, 0.0512 mmol) were added to a stirred solution of the alcohol $13(17.2 \mathrm{mg}, 0.0466 \mathrm{mmol})$ in $0.2 \mathrm{~cm}^{3}$ of THF at $0^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 30 min . The mixture was concentrated under reduced pressure to give an oil, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield $11.5 \mathrm{mg}(0.0327$ $\mathrm{mmol}, 70 \%$) of compound $\mathbf{1 0}$, colourless crystals, mp $76-78{ }^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 61.26; H, 7.18; N, 3.91. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $61.51 ; \mathrm{H}, 7.17 ; \mathrm{N}, 3.99 \%$); $[a]_{\mathrm{D}}^{18}-78.0$ (c 0.407 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{d}, J 6.6$, CMe), $0.87(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 1.42(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.31(3 \mathrm{H}$, s, CMe), $2.66(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $7.3,5-\mathrm{H}), 2.70(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $3.48(1 \mathrm{H}, \mathrm{t}, J 7.1,4-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.09(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $1.0, \mathrm{CH}=), 6.72(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $6.6, \mathrm{CH}=)$ and 6.96 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$).

Reaction of methyl (2E,4S,5S)-6-methyl-4,5-[N-(2,4,6-tri-methylphenylsulfonyl)epimino]hept-2-enoate 14 with MSA in CHCl_{3}

By use of a procedure similar to that described for the preparation of $\mathbf{1 1}$ from 10, the trans- (E)-enoate $\mathbf{1 4}(120 \mathrm{mg}, 0.342$ mmol) was converted into the γ-mesyloxy- α, β-enoate 15 (colourless oil) by treatment with MSA in CHCl_{3}.

Compound 15, colourless oil (crude), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 0.79 ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}$), 0.93 ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}$), $1.85(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.64(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.92(3 \mathrm{H}, \mathrm{s}$, SMe), $3.40(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.80(1 \mathrm{H}, \mathrm{d}, J 9.6$, $\mathrm{NH}), 5.35(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.07(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $1.7, \mathrm{CH}=)$, $6.80(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $5.6, \mathrm{CH}=)$ and $6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; ~ m / z$ (FAB-LRMS) $448\left(\mathrm{MH}^{+}\right), 446,352,254,183$ (base peak) and 119.

Reaction of methyl (2E,4S,5S)-6-methyl-4,5-[N-(2,4,6-tri-methylphenylsulfonyl)epimino]hept-2-enoate 14 with TFA

By use of a procedure similar to that described for the preparation of $\mathbf{1 2}$ from 10, the trans- (E)-enoate $\mathbf{1 4}(139 \mathrm{mg}, 0.396$ mmol) was converted into the γ-trifluoroacetoxy- α, β-enoate 16 (colourless oil) by treatment with TFA. Hydrolysis, and purification by flash chromatography gave the hydrolysate 17 (133.3 $\mathrm{mg}, 0.361 \mathrm{mmol}, 91 \%$ yield) as a colourless oil.

Compound 16, colourless oil (crude), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $0.83(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 0.87(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.85(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.59(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.51(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.77$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.97(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{NH}$), $5.53(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $1.3, \mathrm{CH}=), 6.78(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and 5.6, $\mathrm{CH}=$) and $6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; m / z$ (FAB-LRMS) 466 $\left(\mathrm{MH}^{+}\right), 352,290,254,183,167,119,91$ (base peak) and 72.

Compound 17, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 370.1693. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 370.1688\right]$; $[a]_{\mathrm{D}}^{25}-58.9$ (c 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.73(3 \mathrm{H}, \mathrm{d}, J 6.6$, CMe), $0.78(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.70(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}$, CMe), $2.64(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.51(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.16$ ($1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 1.7, CH=), 6.91 (1 H , dd, $J 15.5$ and 4.0, $\mathrm{CH}=)$ and $6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$; $m / z(\mathrm{FAB}-\mathrm{LRMS}) 392\left(\mathrm{MNa}^{+}\right)$, $370\left(\mathrm{MH}^{+}\right), 352,254,183,167,119,91$ (base peak) and 72.

Methyl (2E,4S,5S)-6-methyl-4,5-[N-(2,4,6-trimethylphenyl-sulfonyl)epimino]hept-2-enoate 14 from 17 (confirmation of the γ, δ-erythro stereochemistry of 17)
By use of a procedure similar to that described for the prepar-
ation of $\mathbf{1 0}$ from $\mathbf{1 3}$, the alcohol $\mathbf{1 7}(32.0 \mathrm{mg}, 0.0866 \mathrm{mmol})$ was converted into the trans-(E)-enoate $14(20.8 \mathrm{mg}, 0.0592 \mathrm{mmol}$, 68%) colourless crystals, $\mathrm{mp} 107-108{ }^{\circ} \mathrm{C}$ (from n-hexane) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 352.1588. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 352.1582]$; $[a]_{\mathrm{D}}^{26}-11.0\left(c 1.09\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe})$, $1.56(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.90$ $(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $4.0,5-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $4.0,4-\mathrm{H}$), $3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.13(1 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{CH}=), 6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.16(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $10.2, \mathrm{CH}=)$; m / z (FAB-LRMS) $374\left(\mathrm{MNa}^{+}\right), 352\left(\mathrm{MH}^{+}\right), 320,296$ (base peak), 183, 168, 137 and 119

Methyl (2E)-3-[(4S,5S)-2,2-dimethyl-4-methylethyl- N-(2,4,6-trimethylphenylsulfonyl)oxazolidin-5-yl]prop-2-enoate 20
To a stirred solution of $149 \mathrm{mg}(0.402 \mathrm{mmol})$ of $\mathbf{1 3}$ in a mixture of $3 \mathrm{~cm}^{3}$ of toluene and $0.148 \mathrm{~cm}^{3}(1.21 \mathrm{mmol})$ of $2,2-$ dimethoxypropane at rt was added $1.52 \mathrm{mg}(6.03 \mu \mathrm{~mol})$ of pyridinium toluene-p-sulfonate, and the mixture was gently refluxed for 3 h . The mixture was made alkaline with saturated NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and dried over MgSO_{4}. Concentration under reduced pressure gave a crystalline residue, which was flash chromatographed over silica gel with n-hexane-EtOAc (3:1) to yield $139 \mathrm{mg}(0.339 \mathrm{mmol}, 84 \%)$ of compound $\mathbf{2 0}$ as colourless crystals, $\mathrm{mp} 128-129^{\circ} \mathrm{C}\left[\right.$ from n-hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(3: 1)\right]$ (Found: C, 61.48; H, 7.46; N, 3.39. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}$ requires C, 61.59; $\mathrm{H}, 7.63$; $\mathrm{N}, 3.42 \%) ;[a]_{\mathrm{D}}^{28}-115.6\left(c 1.33\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.63 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}$), 0.68 ($3 \mathrm{H}, \mathrm{d}, J 6.9$, CMe), 0.93 (1 H , $\mathrm{m}, 5-\mathrm{H}), 1.81(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.84(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.36(3 \mathrm{H}, \mathrm{s}$, CMe), $2.69(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.78(1 \mathrm{H}, \mathrm{t}, J 3.8,4-\mathrm{H}), 3.81(3 \mathrm{H}, \mathrm{s}$, OMe), $4.59(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.07(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $1.7, \mathrm{CH}=)$, $7.00(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.08(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $4.8, \mathrm{CH}=)$.

Methyl (2E)-3-[(4S,5R)-2,2-dimethyl-4-methylethyl- N-(2,4,6-trimethylphenylsulfonyl)oxazolidin-5-yl]prop-2-enoate 21

By use of a procedure similar to that described for the preparation of $\mathbf{2 0}$ from 13, the alcohol $17(120 \mathrm{mg}, 0.326 \mathrm{mmol})$ was converted into the oxazolidinyl derivative $21(86.2 \mathrm{mg}, 0.211$ $\mathrm{mmol}, 65 \%)$ as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 410.1994. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 410.2001\right] ;[a]_{\mathrm{D}}^{28}-46.8$ (c 1.24 in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.60(3 \mathrm{H}, \mathrm{d}, J 7.1$, CMe), $0.65(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 0.89(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.83(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CMe}), 1.91(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.70(6 \mathrm{H}, \mathrm{s}$, CMe), 3.68 (1 H , dd, $J 5.7$ and 3.8, 4-H), 3.78 ($3 \mathrm{H}, \mathrm{s}$, OMe), $4.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.21(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $1.8, \mathrm{CH}=), 6.99$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$) and 7.08 ($1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $4.5, \mathrm{CH}=$); m / z (FAB-LRMS) $410\left(\mathrm{MH}^{+}\right), 366,240,183,119$ and 112 (base peak).
Reaction of methyl (2Z,4R,5S)-6-methyl-4,5-[N-(2,4,6-trimeth-ylphenylsulfonyl)epimino]hept-2-enoate 18 with MSA in CHCl_{3} and production of ($4 S, 5 S$)-6-methyl-5-(2,4,6-trimethylphenyl-sulfonylamino)hept-2-en-4-olide 22
By use of a procedure similar to that described for the reaction of $\mathbf{1 0}$ with MSA in CHCl_{3}, the cis-(Z)-enoate $\mathbf{1 8}$ ($238 \mathrm{mg}, 0.675$ mmol) was treated with MSA (6.08 mmol) in CHCl_{3} to yield complex mixtures containing the γ-lactone ring-cyclized product $22(59 \mathrm{mg}, 0.175 \mathrm{mmol}, 26 \%$), which was purified by flash chromatography over silica gel with n-hexane-EtOAc (4:1).

Compound 22, colourless crystals, mp 217-218 ${ }^{\circ} \mathrm{C}$ [from n -hexane-EtOAc (5:1)] (Found: C, 60.26; H, 6.66; N, 4.11. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $60.53 ; \mathrm{H}, 6.82 ; \mathrm{N}, 4.15 \%$); $[a]_{\mathrm{D}}^{19}-181.4$ (c 2.69 in CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3410,3240,2960,1752,1600$, $1455,1408,1327,1158,1100,1071,1057,1028,910,850,815$, $650 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 0.97$ ($3 \mathrm{H}, \mathrm{d}, J 6.9$, CMe), 1.93 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 2.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.64(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.43(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.64(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{NH})$,
$5.15(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.86(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and $2.0, \mathrm{CH}=), 6.94$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.11(1 \mathrm{H}, \mathrm{dd}, J 5.6$ and 1.3, CH=); $m / z(\mathrm{FAB}-$ LRMS) $338\left(\mathrm{MH}^{+}\right), 254,183$ (base peak), 154, 137 and 119.

Reaction of methyl (2Z,4R,5S)-6-methyl-4,5-[N-(2,4,6-trimeth-ylphenylsulfonyl)epimino]hept-2-enoate 18 with TFA

By use of a procedure similar to that described for the reaction of $\mathbf{1 0}$ with TFA, the $c i s$ - (Z)-enoate $\mathbf{1 8}(146 \mathrm{mg}, 0.415 \mathrm{mmol})$ was treated with TFA to afford an inseparable complex mixture.

Reaction of methyl ($2 Z, 4 S, 5 S$)-6-methyl-4,5-[N-(2,4,6-trimeth-ylphenylsulfonyl)epimino]hept-2-enoate 19 with MSA in $\mathbf{C H C l}_{3}$ and production of $(4 R, 5 S)$-6-methyl-5-(2,4,6-trimethylphenyl-sulfonylamino)hept-2-en-4-olide 23

By use of a procedure similar to that described for the reaction of $\mathbf{1 0}$ with MSA in CHCl_{3}, the trans-(Z)-enoate $\mathbf{1 9}$ (256 mg , 0.727 mmol) was treated with MSA (6.55 mmol) in CHCl_{3} to yield complex mixtures containing the γ-lactone ring-cyclized product 23 ($142 \mathrm{mg}, 0.419 \mathrm{mmol}, 58 \%$), which was purified by flash chromatography over silica gel with n-hexane-EtOAc (4:1).
Compound 23, colourless oil [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}$, 336.1279. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M-\mathrm{H}, 336.1269\right]$; $[a]_{\mathrm{D}}^{24}+72.6$ (c 0.36 in CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3290,2980,2360,1720,1594$, $1499,1412,1368,1328,1199,1150,1108,1074,1037,918,870$, $846,715,660 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.9$, CMe), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}$), $1.90(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.33(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CMe}), 2.65(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 4.00(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.83$ ($1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{NH}$), $5.99(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and 1.7 , $\mathrm{CH}=), 6.60(1 \mathrm{H}$, ddd, $J 9.6,3.3$ and $0.7, \mathrm{CH}=)$ and $7.00(2 \mathrm{H}, \mathrm{s}$, ArH); m / z (FAB-LRMS) 338 (MH^{+}), 254, 183 (base peak), 149, 119 and 115.

Reaction of methyl (2Z,4S,5S)-6-methyl-4,5-[N-(2,4,6-trimeth-ylphenylsulfonyl)epimino]hept-2-enoate 19 with TFA and production of ($\mathbf{4 R}, \mathbf{5 S}$)-6-methyl-5-(2,4,6-trimethylphenyl-sulfonylamino)hept-2-en-4-olide 23

By use of a procedure similar to that described for the reaction of $\mathbf{1 0}$ with TFA, the trans- (Z)-enoate $\mathbf{1 9}(130 \mathrm{mg}, 0.370 \mathrm{mmol})$ was treated with TFA $\left(1 \mathrm{~cm}^{3}\right)$ to yield complex mixtures containing the γ-lactone ring-cyclized product $23(14.4 \mathrm{mg}, 0.0427$ $\mathrm{mmol}, 12 \%$), which was purified by flash chromatography over silica gel with n-hexane-EtOAc (4:1).
Compound 23, colourless oil [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}$, 336.1268. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M-\mathrm{H}, 336.1270\right]$; $[a]_{\mathrm{D}}^{24}+69.4$ (c 0.42 in CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3350,2990,2370,1720,1595$, $1500,1414,1366,1335,1202,1148,1108,1074,1038,920,870$, $842,715,664 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), $0.94(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 1.90(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.33(3 \mathrm{H}$, s, CMe), 2.64 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.97(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.98$ ($1 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{NH}$), 5.98 ($1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 1.7 , $\mathrm{CH}=), 6.59(1 \mathrm{H}$, ddd, $J 9.8,3.2$ and $0.7, \mathrm{CH}=)$ and $7.00(2 \mathrm{H}, \mathrm{s}$, ArH); m / z (FAB-LRMS) $336\left[(\mathrm{M}-\mathrm{H})^{-}\right], 198$ (base peak), 183, 153 and 151.

(R)- \boldsymbol{N}-(tert-Butoxycarbonyl)phenylalaninol 25

DIBAL in n-hexane ($73.8 \mathrm{~cm}^{3}, 68.6 \mathrm{mmol} ; 0.93 \mathrm{~mol} \mathrm{dm}^{-3}$ solution) was added dropwise to a stirred solution of the ester 24 $(5 \mathrm{~g}, 17.9 \mathrm{mmol})$ in $20 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ under argon. The mixture was allowed to warm to rt and stirring was continued for 3 h . The mixture was recooled to $-78^{\circ} \mathrm{C}$, and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise with vigorous stirring. The inorganic salts were removed by filtration through Celite. The filtrate was extracted with EtOAc, and the extract was washed with water and dried over MgSO_{4}. The usual work-up and flash chromatography over silica gel with n-hexane-EtOAc (2:1) gave a crystalline mass. Recrystallization from n-hexane-EtOAc (3:1) gave $3.27 \mathrm{~g}(13.0 \mathrm{mmol}$,
73%) of the title compound $\mathbf{2 5}$ as colourless crystals, $\mathrm{mp} 99^{\circ} \mathrm{C}$ [from n-hexane-EtOAc (3:1)] (Found: C, 66.74; H, 8.30; N, 5.53. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, $66.90 ; \mathrm{H}, 8.42 ; \mathrm{N}, 5.57 \%$); $[a]_{\mathrm{D}}^{20}$ $+22.9\left(c 1.41\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.41(9 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}), 2.53(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.84\left(2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH}_{2}\right), 3.55(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHH}), 3.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.81(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NH})$ and 7.19-7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

(3R,4R)-4-[(tert-Butoxycarbonylamino)-5-phenylpent-1-en-3-ol 27 and (3S,4R)-4-(tert-butoxycarbonylamino)-5-phenylpent-1-en-3-ol 28

To a stirred solution of oxalyl dichloride ($6.54 \mathrm{~cm}^{3}, 75 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon was added dropwise a solution of DMSO ($11.7 \mathrm{~cm}^{3}, 165 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\left.\mathrm{cm}^{3}\right)$. After 20 min , a solution of the alcohol $25(12.6 \mathrm{~g}, 50$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added to the above reagent at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . DIPEA $\left(52.3 \mathrm{~cm}^{3}\right.$, 300 mmol) was added dropwise to the above mixture at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h with warming to $0^{\circ} \mathrm{C}$. The reaction was quenched with $20 \mathrm{~cm}^{3}$ of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$ with vigorous stirring. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed successively with 5% citric acid, water, $5 \% \mathrm{NaHCO}_{3}$ and water, and dried over MgSO_{4}. Concentration under reduced pressure gave the crude aldehyde 26 as a colourless oil. To a stirred solution of ZnCl_{2} $(27.3 \mathrm{~g}, 200 \mathrm{mmol})$ and $\mathrm{LiCl}(17.0 \mathrm{~g}, 400 \mathrm{mmol})$ in $200 \mathrm{~cm}^{3}$ of $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ was added via syringe $97.6 \mathrm{~cm}^{3}(200 \mathrm{mmol})$ of $2.05 \mathrm{~mol} \mathrm{dm}^{-3}$ vinylmagnesium chloride in THF. After being stirred at this temperature for 10 min , a solution of the above crude aldehyde 26 in THF ($50 \mathrm{~cm}^{3}$) was added dropwise to the mixture, and the mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ and stirred at this temperature for 4 h , followed by quenching with $100 \mathrm{~cm}^{3}$ of aq. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$. The mixture was concentrated under reduced pressure and extracted with EtOAc. Usual work-up led to a mixture of products as a colourless oil, which was separated by flash chromatography over silica gel eluting with n-hexane-EtOAc (5:1), yielding, in order of elution, $27(6.31 \mathrm{~g}, 22.8 \mathrm{mmol}, 46 \%)$ and $28(1.05 \mathrm{~g}, 3.79 \mathrm{mmol}$, 8%).

Compound 27, colourless crystals, mp $93-96^{\circ} \mathrm{C}$ [from n hexane $-\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 69.12; H, 8.46; N, 5.04. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, $69.30 ; \mathrm{H}, 8.36 ; \mathrm{N}, 5.05 \%$); $[a]_{\mathrm{D}}^{20}+52.6$ (c 0.966 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.11$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $5.19(1 \mathrm{H}$, ddd, $J 10.2,1.3$ and $1.3, \mathrm{C} H \mathrm{H}=), 5.28(1 \mathrm{H}$, ddd, $J 17.2,1.3$ and $1.3, \mathrm{CH} H=)$, $5.90(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.6$ and $5.6, \mathrm{CH}=)$ and $7.18-7.34(5 \mathrm{H}$, m, Ph).

Compound 28, colourless crystals, mp $120-122^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 69.26; H, 8.56; N, 5.02. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires C, 69.30; H, 8.36; N, 5.05\%); $[a]_{\mathrm{D}}^{20}+25.5$ (c 0.964 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.73$ $(1 \mathrm{H}, \mathrm{dd}, J 13.9$ and $8.9, \mathrm{C} H \mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 5.3 , $\mathrm{CH} H), 2.96(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.97(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.29(1 \mathrm{H}, \mathrm{ddd}, J 10.6,1.3$ and 1.3 , $\mathrm{C} H \mathrm{H}=), 5.37(1 \mathrm{H}, \mathrm{ddd}, J 17.2,1.3$ and 1.3, $\mathrm{CH} H=), 5.94(1 \mathrm{H}$, ddd, $J 17.2,10.6$ and $5.6, \mathrm{CH}=)$ and $7.18-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

(3R,4R)-5-Phenyl-4-(2,4,6-trimethylphenylsulfonylamino)pent-1-en-3-ol 29

TFA $\left(5 \mathrm{~cm}^{3}\right)$ and anisole ($0.969 \mathrm{~cm}^{3}, 8.97 \mathrm{mmol}$) were added to $2.49 \mathrm{~g}(8.97 \mathrm{mmol})$ of the alcohol 27 at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . The mixture was concentrated under reduced pressure to give an oily residue, which was washed with n-hexane. To the oil in $5 \mathrm{~cm}^{3}$ of CHCl_{3} were added at $0{ }^{\circ} \mathrm{C}$ successively $3.7 \mathrm{~cm}^{3}(26.9 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ and $2.35 \mathrm{~g}(10.8$ mmol) of Mts-Cl. After being stirred for 15 h , the mixture was made acidic with saturated aq. citric acid and extracted with EtOAc, and the extract was washed with water and dried over
MgSO_{4}. Purification by flash chromatography over silica gel with n-hexane-EtOAc (3:1) gave $2.12 \mathrm{~g}(5.91 \mathrm{mmol}, 66 \%)$ of the title compound $\mathbf{2 9}$ as colourless crystals, mp $95-97^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 66.65; H, 6.97; N, 3.82. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 66.82; H, 7.01; N, 3.90\%); $[a]_{\mathrm{D}}^{27}+42.4$ (c 0.932 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99(1 \mathrm{H}, \mathrm{d}, J 3.6$, OH), $2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.56(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.67(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 6.3, CHH$), 2.94(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $8.3, \mathrm{CH} H), 3.44$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{NH}), 5.09$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}=$), $5.21(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H=)$, $5.69(1 \mathrm{H}$, ddd, $J 17.2$, 10.6 and $5.9, \mathrm{CH}=), 6.87(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.00-7.18(5 \mathrm{H}, \mathrm{m}$, Ph).

(2R,3S)-2-Benzyl- N-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 30

$\mathrm{Ph}_{3} \mathrm{P}(0.950 \mathrm{~g}, 3.62 \mathrm{mmol})$ and DEAD $\left(0.570 \mathrm{~cm}^{3}\right.$ of a 40% solution in toluene, 3.62 mmol) were added to a stirred solution of the alcohol $29(1.18 \mathrm{~g}, 3.29 \mathrm{mmol})$ in $3 \mathrm{~cm}^{3}$ of THF at $0^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 30 min . The mixture was concentrated under reduced pressure to give an oil, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield 1.11 g ($3.26 \mathrm{mmol}, 99 \%$) of compound $\mathbf{3 0}$ as colourless crystals, mp $72-73^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 70.20; H, 6.82; N, 3.96. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $70.35 ; \mathrm{H}, 6.79 ; \mathrm{N}, 4.10 \%$); $[a]_{\mathrm{D}}^{27}+26.2$ (c 0.910 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.58(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.64(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $7.6, \mathrm{C} H \mathrm{H}), 2.75$ $(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $5.6, \mathrm{CH} H), 3.09(1 \mathrm{H}$, ddd, $J 7.6,7.6$ and 5.6, 2-H), $3.47(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}=), 5.50(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH} H=$), 5.78 (1 H , ddd, $J 16.8,10.6$ and 6.6, CH=), 6.84 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$) and 6.94-7.14 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Methyl (2E,4S,5R)-6-phenyl-4,5-[N-(2,4,6-trimethylphenyl-sulfonyl)epiminolhex-2-enoate 31

O_{3} was bubbled through a solution of the vinylaziridine $\mathbf{3 0}$ (1.02 $\mathrm{g}, 2.98 \mathrm{mmol}$) in $15 \mathrm{~cm}^{3}$ of $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (3:1) at $-78^{\circ} \mathrm{C}$ until a blue colour persisted. Nitrogen was bubbled through the solution with stirring for 30 min during which time it was allowed to warm to $0^{\circ} \mathrm{C}$. To the solution at $0{ }^{\circ} \mathrm{C}$ was added dimethyl sulfide ($0.240 \mathrm{~cm}^{3}, 3.28 \mathrm{mmol}$), and the mixture was stirred for 30 min . Concentration under reduced pressure left an oily residue, which was dissolved in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$. To the mixture at $0^{\circ} \mathrm{C}$ was added [(methoxycarbonyl)methylene]triphenylphosphorane ($1.99 \mathrm{~g}, 5.96 \mathrm{mmol}$), and the mixture was stirred for 2 h . The mixture was concentrated under reduced pressure to leave a semisolid, which was extracted with EtOAc and the extract was washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, water, saturated aq. NaHCO_{3} and water, and dried over MgSO_{4}. Concentration under reduced pressure gave a residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc ($5: 1$) to give a mixture of the enoates $\mathbf{3 1}$ and 32, which was dissolved in $10 \mathrm{~cm}^{3}$ of dry THF, and to the mixture at $0^{\circ} \mathrm{C}$ under argon was added by syringe with stirring a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(147 \mathrm{mg}, 0.128 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $5 \mathrm{~cm}^{3}$ of dry THF. After 4 h , the mixture was allowed to warm to rt , and the stirring was continued for a further 15 h . Purification by flash chromatography over silica gel with n-hexane-EtOAc (5:1) and recrystallization from n-hexane gave $577 \mathrm{mg}(1.44$ $\mathrm{mmol}, 57 \%$ yield based on 30) of the cis-(E)-enoate 31 as colourless crystals, mp $54-55^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 65.99; H, 6.24; N, 3.49. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $66.14 ; \mathrm{H}$, 6.31; $\mathrm{N}, 3.51 \%) ;[a]_{\mathrm{D}}^{19}+64.9\left(c 0.575\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.57(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.64(1 \mathrm{H}$, dd, $J 14.6$ and $8.4, \mathrm{CHH}), 2.76(1 \mathrm{H}$, dd, $J 14.6$ and 5.1 , $\mathrm{CH} H), 3.19(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.56(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}$, OMe), $6.20(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $1.0, \mathrm{CH}=), 6.85(1 \mathrm{H}$, dd, $J 15.8$ and $6.6, \mathrm{CH}=), 6.86(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 6.92-7.12 $(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; ~ m / z$ (FAB-LRMS) $400\left(\mathrm{MH}^{+}\right)$, 216, 183 (base peak), 119 and 91 .

(3S,4S)-6-Methyl-4-(2,4,6-trimethylphenylsulfonylamino)hept-1-en-3-ol 34

By use of a procedure identical with that described for the preparation of 29 from 27 , the known alcohol $33(3.63 \mathrm{~g}, 14.9$ $\mathrm{mmol})$ was converted into $3.99 \mathrm{~g}(12.3 \mathrm{mmol}, 82 \%)$ of the title compound 34, as colourless crystals, mp 137-138 ${ }^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 62.77; H, 8.45; N, 4.27. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 62.74 ; \mathrm{H}, 8.36 ; \mathrm{N}, 4.30 \%\right) ;[\alpha]_{\mathrm{D}}^{25}-14.1$ (c 0.951 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.69(3 \mathrm{H}, \mathrm{d}, J 6.3$, CMe), $0.78(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 1.23(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.40$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 1.44(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.07(1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{OH})$, $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.63(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.29(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.05$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NH}), 5.07(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}=)$, $5.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H=), 5.68(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.6$ and $6.6, \mathrm{CH}=)$ and $6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

(2S,3R)-2-(2-Methylpropyl)- N-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 35

By use of a procedure identical with that described for the preparation of 30 from 29 , the alcohol $34(1.04 \mathrm{~g}, 3.18 \mathrm{mmol})$ was converted into $0.963 \mathrm{~g}(3.13 \mathrm{mmol}, 98 \%)$ of the title compound 35, as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 308.1678. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 308.1684\right]$; $[a]_{\mathrm{D}}^{25}-3.12$ (c 0.915 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{d}, J 5.3$, CMe), $0.87(3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CMe}), 1.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.38$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.96(1 \mathrm{H}$, ddd, $J 13.5,7.3$ and $0.5,2-\mathrm{H}), 3.35$ $(1 \mathrm{H}, \mathrm{t}, J 7.3,3-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H)$, $5.61(1 \mathrm{H}$, ddd, $J 17.2,10.2$ and $6.9, \mathrm{CH}=)$ and $6.94(2 \mathrm{H}, \mathrm{s}$, ArH); m / z (FAB-LRMS) $308\left(\mathrm{MH}^{+}\right), 306,183$ (base peak), 124 and 119.

Benzyl (2E,4R,5S)-7-methyl-4,5-[N-(2,4,6-trimethylphenyl-sulfonyl)epimino]oct-2-enoate 36

By use of a procedure similar to that described for the preparation of $\mathbf{3 1}$ from $\mathbf{3 0}$, the vinylaziridine $\mathbf{3 5}(0.928 \mathrm{mg}, 3.02 \mathrm{mmol})$ was converted into $886 \mathrm{mg}(2.01 \mathrm{mmol}, 70 \%$ yield based on 35$)$ of the title compound 36 by successive treatments with O_{3} in $\mathrm{CHCl}_{3}-n$-hexane $(1: 1)$ at $-78^{\circ} \mathrm{C}$ for 30 min , dimethyl sulfide (2.21 mmol), [(benzyloxycarbonyl)methylene]triphenylphosphorane $(6.04 \mathrm{mmol})$ in CHCl_{3} at $0{ }^{\circ} \mathrm{C}$ for 15 h , and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.167 mmol) in THF at rt for 17 h .

Compound 36, colourless crystals, mp $81-82^{\circ} \mathrm{C}$ (from n hexane) (Found: $\mathrm{C}, 67.90 ; \mathrm{H}, 7.20 ; \mathrm{N}, 2.88 . \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 68.00 ; \mathrm{H}, 7.08 ; \mathrm{N}, 3.17 \%) ;[a]_{\mathrm{D}}^{26}-2.47$ (c 2.41 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CMe}), 0.86$ ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), $1.32\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.53(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.68(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.43$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.08(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and 0.9 , $\mathrm{CH}=), 6.72(1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $6.9, \mathrm{CH}=), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 7.32-7.39 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(2S)-6-(2-Chlorophenylmethoxycarbonylamino)- N-methoxy- N -methyl-2-(2,4,6-trimethylphenylsulfonylamino)hexanamide 38

To a stirred solution of $N^{\varepsilon}-(\mathrm{Cl}-\mathrm{Z})$-protected (S)-lysine 37 (3 g , $9.53 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(3.31 \mathrm{~cm}^{3}, 23.8 \mathrm{mmol}\right)$ in $\mathrm{H}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added $2.50 \mathrm{~g}(11.4 \mathrm{mmol})$ of $\mathrm{Mts}-\mathrm{Cl}$. After being stirred for 15 h , the mixture was made acidic with saturated aq. citric acid and extracted with EtOAc and the extract was washed with water and dried over MgSO_{4} to give a crude N^{α} and N^{ε}-protected lysine as a colourless oil. To a stirred solution of the above N^{α} - and N^{ε}-protected lysine in DMF $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ were added $\mathrm{HOBt}(1.61 \mathrm{~g}, 10.5 \mathrm{mmol}), \mathrm{WSCD}\left(1.82 \mathrm{~cm}^{3}\right.$, 10.5 mmol) and N, O-dimethylhydroxylamine hydrochloride $(1.02 \mathrm{~g}, 10.5 \mathrm{mmol})$. After being stirred at rt for 15 h , the solution was concentrated under reduced pressure and extracted with EtOAc. The extract was washed successively with 5% citric acid, water, $5 \% \mathrm{NaHCO}_{3}$ and water, and dried over MgSO_{4}.

Usual work-up and flash chromatography over silica gel with n-hexane-EtOAc (3:1) gave $3.78 \mathrm{~g}(7.00 \mathrm{mmol}, 74 \%)$ of the title compound $\mathbf{3 8}$ as a colourless crystalline mass, mp 111$113{ }^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, 55.64; H, 6.51; N , 7.58. $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires C , $55.66 ; \mathrm{H}, 6.35 ; \mathrm{N}$, $7.78 \%)$; $[a]_{\mathrm{D}}^{21}+14.7\left(c 1.39\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.30\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 2.65 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$), $3.51(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.16(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $5.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J 9.6, \mathrm{NH}), 6.92(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$ and $7.24-7.45(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z$ (FAB-LRMS) 540 $\left(\mathrm{MH}^{+}\right), 496,398,353$ (base peak), 309, 252, 208, 183, 127, $125,119,91$ and 84 .
(3S,4S)-8-(2-Chlorophenylmethoxycarbonylamino)-4-(2,4,6-trimethylphenylsulfonylamino) oct-1-en-3-ol 40 and (3R,4S)-8-(2-chlorophenylmethoxycarbonylamino)-4-(2,4,6-trimethylphenyl-sulfonylamino)oct-1-en-3-ol 41

To a stirred solution of the amide $38(3 \mathrm{~g}, 5.56 \mathrm{mmol})$ in dry THF ($10 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$ with stirring was added via syringe $22 \mathrm{~cm}^{3}(22.2 \mathrm{mmol})$ of a $1.01 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of DIBAL in toluene, and the stirring was continued for 1.5 h . $\operatorname{EtOAc}\left(2 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ were added successively to the above mixture at $-78^{\circ} \mathrm{C}$, and the stirring was continued at $-78^{\circ} \mathrm{C}$ for 30 min followed by addition with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$. After being stirred at $0^{\circ} \mathrm{C}$ for 20 min , the mixture was extracted with EtOAc and the extract was washed with water and dried over MgSO_{4}. Usual work-up gave the crude aldehyde 39 (colourless oil). By use of a procedure similar to that described for the preparation of 27 and 28 from 26, the above crude aldehyde 39 was converted into allyl alcohols 40 and 41 (diastereomixture $2.71 \mathrm{~g}, 5.31 \mathrm{mmol}, 96 \%$) as a colourless oil by treatment with $\mathrm{ZnCl}_{2}(22.2 \mathrm{mmol}), \mathrm{LiCl}(22.2 \mathrm{mmol})$, and $1.47 \mathrm{~mol} \mathrm{dm}^{-3}$ vinylmagnesium chloride (22.2 mmol) in THF at $0^{\circ} \mathrm{C}$ for 4 h .

Compounds 40 and 41, colourless oil (diastereomixture), [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 509.1866. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $M+\mathrm{H}, 509.1877$]; $m / z($ FAB-LRMS $) 509\left(\mathrm{MH}^{+}\right), 465,367,349$ (base peak), 252, 208, 183, 167, 125 and 119.
(2S,3R)-2-[4-(2-Chlorophenylmethoxycarbonylamino)butyl]- N -(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 42 and ($2 S, 3 S$)-2-[4-(2-chlorophenylmethoxycarbonylamino)butyl]- N -(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 43
By use of a procedure similar to that described for the preparation of $\mathbf{3 0}$ from $\mathbf{2 9}$, the diastereomixtures 40 and 41 (2.34 g , 4.60 mmol) were converted into vinylaziridines 42 and 43 (diastereomixture $1.96 \mathrm{~g}, 3.98 \mathrm{mmol}, 87 \%$) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 491.1775. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 491.1772$]; $m / z($ FAB-LRMS $) 491\left(\mathrm{MH}^{+}\right), 349,308,252$ (base peak), 208, 183, 167, 125, 119 and 91.

Benzyl (2E,4R,5S)-9-(2-chlorophenylmethoxycarbonylamino)-4,5-[(2,4,6-trimethylphenylsulfonyl)epimino]non-2-enoate 44

By use of a procedure similar to that described for the preparation of 36 from 35, the diastereomixtures 42 and $43(1.91 \mathrm{~g}$, $3.90 \mathrm{mmol})$ were converted into the cis-(E)-enoate 44 [951 $\mathrm{mg}, 1.52 \mathrm{mmol}, 39 \%$ (3 steps)] as a colourless oil, [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 625.2133 . \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{ClN}_{2} \mathrm{O}_{6}$ S requires $M+\mathrm{H}$, $625.2139] ;[a]_{\mathrm{D}}^{24}-43.5\left(c 1.51\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.67 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.95 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.06 $\left(2 \mathrm{H}, \mathrm{dd}, J 12.9\right.$ and $\left.6.4, \mathrm{CH}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.73(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NH}), 5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.09(1 \mathrm{H}$, dd, $J 15.6$ and $1.0, \mathrm{CH}=), 6.71(1 \mathrm{H}$, dd, $J 15.6$ and $6.7, \mathrm{CH}=), 6.94$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$) and 7.21-7.43 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m / z (FAB-LRMS) $625\left(\mathrm{MH}^{+}\right), 441,252$ (base peak), 208, 154, 136, 125, 119 and 91.
(1S)-1-[(4S)-N-(tert-Butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl]prop-2-en-1-ol 46 and ($1 R$)-1-[(4S)-N-(tert-butoxycarbonyl)-2,2-dimethyloxazolidin-4-yl]prop-2-en-1-ol 47

By use of a procedure similar to that described for the preparation of $\mathbf{2 7}$ and $\mathbf{2 8}$ from 26, the aldehyde $\mathbf{4 5}(3.95 \mathrm{~g}, 17.2 \mathrm{mmol})$ was converted into allyl alcohols 46 and 47 (diastereomixture $2.91 \mathrm{~g}, 11.3 \mathrm{mmol}, 59 \%$) as a colourless oil by treatment with $\mathrm{ZnCl}_{2}(51.6 \mathrm{mmol}), \mathrm{LiCl}(51.6 \mathrm{mmol})$, and 1.60 mol dm^{-3} vinylmagnesium chloride (51.6 mmol) in THF at $0^{\circ} \mathrm{C}$ for 4 h .

Compounds 46 and 47, colourless oil (diastereomixture) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 258.1710. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $M+\mathrm{H}, 258.1705] ; m / z($ FAB-LRMS $) 258\left(\mathrm{MH}^{+}\right), 202,200$, 189, 184 (base peak), 144, 131, 100 and 57.
(2S,3S)-2-(2,4,6-Trimethylphenylsulfonylamino)pent-4-ene-1,3diol 48 and ($2 S, 3 R$)-2-(2,4,6-trimethylphenylsulfonylamino)pent-4-ene-1,3-diol 49

TFA ($15 \mathrm{~cm}^{3}$) and $\mathrm{H}_{2} \mathrm{O}\left(2.11 \mathrm{~cm}^{3}, 117 \mathrm{mmol}\right)$ were added to $3.02 \mathrm{~g}(11.7 \mathrm{mmol})$ of the allyl alcohols 46 and 47 (diastereomixture) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . The mixture was concentrated under reduced pressure to give an oily residue, which was washed with n-hexane. To the oil in $10 \mathrm{~cm}^{3}$ of CHCl_{3} were added at $0{ }^{\circ} \mathrm{C}$ successively $3.99 \mathrm{~cm}^{3}(23.5 \mathrm{mmol})$ of DIPEA and $4.62 \mathrm{~g}(21.1 \mathrm{mmol})$ of $\mathrm{Mts}-\mathrm{Cl}$. After being stirred for 15 h , the mixture was made acidic with saturated aq. citric acid and extracted with EtOAc and the extract was washed with water and dried over MgSO_{4}. Purification by flash chromatography over silica gel with n-hexane-EtOAc ($2: 3$) gave $1.86 \mathrm{~g}(6.21 \mathrm{mmol}, 53 \%)$ of the diastereomixture of 48 and 49 as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 300.1263$. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 300.1269\right]$; m / z (FAB-LRMS) 300 $\left(\mathrm{MH}^{+}\right), 282,252$ (base peak), 242, 183 and 119.
(3S,4S)-5-Benzyloxy-3-hydroxy-4-(2,4,6-trimethylphenylsulfon-ylamino)pent-1-ene 50 and ($3 R, 4 S$)-5-benzyloxy-3-hydroxy-4-(2,4,6-trimethylphenylsulfonylamino)pent-1-ene 51

Sodium hydride (198 mg of 60% dispersion in mineral oil, 4.94 mmol) was added to a stirred solution of the diastereomixture of 48 and $49(672 \mathrm{mg}, 2.42 \mathrm{mmol})$ in $3 \mathrm{~cm}^{3}$ of THF at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min with warming to $0^{\circ} \mathrm{C}$. To the above mixture at $0^{\circ} \mathrm{C}$ was added dropwise benzyl bromide $\left(0.294 \mathrm{~cm}^{3}, 2.47 \mathrm{mmol}\right)$, and the mixture was stirred for 2 h . The reaction was quenched with $5 \mathrm{~cm}^{3}$ of saturated NaHCO_{3} at $0^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc and the extract was washed successively with water, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, water, 5% NaHCO_{3} and water, and dried over MgSO_{4}. Concentration under reduced pressure gave a residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (2:1) to give $483 \mathrm{mg}(1.24 \mathrm{mmol}, 55 \%)$ of the diastereomixture of the alcohols $\mathbf{5 0}$ and $\mathbf{5 1}$.

Compounds 50 and 51, colourless oil (diastereomixture) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 390.1747. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 390.1739] ; m / z$ (FAB-LRMS) $390\left(\mathrm{MH}^{+}\right), 242$ (base peak), 183, 149, 119 and 91
(2R,3R)-2-(Benzyloxymethyl)- N-(2,4,6-trimethylphenylsulfon-yl)-3-vinylaziridine 52 and ($2 R, 3 S$)-2-(benzyloxymethyl)- N -(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 53
By use of a procedure identical with that described for the preparation of $\mathbf{3 0}$ from 29 , the mixture of the alcohols 50 and $51(760 \mathrm{mg}, 1.95 \mathrm{mmol})$ was converted into 640 mg ($1.72 \mathrm{mmol}, 88 \%$) of the diastereomixture of the vinylaziridines 52 and 53 as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 372.1626. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.M+\mathrm{H}, \quad 372.1634\right] ; \mathrm{m} / \mathrm{z}$ (FAB-LRMS) $372\left(\mathrm{MH}^{+}\right), 302,264$ (base peak), 188, 183, 119 and 91.
(2E,4R,5R)-6-Benzyloxy- N-methyl-4,5-[(2,4,6-trimethylphenyl-sulfonyl)epimino]hex-2-enamide 54

By use of a procedure identical with that described for the preparation of the corresponding aldehyde from 30, the mixture of the vinylaziridines 52 and $53(580 \mathrm{mg}, 1.56 \mathrm{mmol})$ was converted into the crude diastereomixture of the corresponding aldehydes. To a stirred solution of $\mathrm{LiCl}(159 \mathrm{mg}, 3.75$ mmol) in $2 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$ was added via syringe DIPEA ($0.652 \mathrm{~cm}^{3}, 3.75 \mathrm{mmol}$) and a $\mathrm{CH}_{3} \mathrm{CN}$ solution $\left(5 \mathrm{~cm}^{3}\right)$ of diethoxphosphoryl- N-methylacetamide (791 mg, 3.75 mmol), which was prepared by treatment of ethyl diethyloxyphosphorylacetate with methylamine (5 equiv.) in MeOH , and the mixture was stirred at this temperature for 30 min . To the mixture at $0^{\circ} \mathrm{C}$ was added dropwise a solution of the above crude aldehydes in $\mathrm{CH}_{3} \mathrm{CN}\left(3 \mathrm{~cm}^{3}\right)$, and the stirring was continued at rt for 12 h . The mixture was concentrated under reduced pressure to leave a semisolid, which was extracted with EtOAc and the extract was washed successively with water, 1 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, water, saturated aq. NaHCO_{3} and water, and dried over MgSO_{4}. Concentration under reduced pressure gave a residue, which was purified by flash chromatography over silica gel with n-hexane- $\operatorname{EtOAc}(5: 1)$ to give a mixture of the enamide 54 and its diastereoisomer. The diastereomixture was treated with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.042 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ by use of a procedure identical with that described for the preparation of the cis- (E)-enoate $\mathbf{3 1}$ from the mixture of $\mathbf{3 1}$ and $\mathbf{3 2}$ to give 232 mg [$0.541 \mathrm{mmol}, 35 \%$ (3 steps)] of the cis-(E)-enamide 54 as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 429.1841$. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 429.1848\right]$; $[\alpha]_{\mathrm{D}}^{21}-54.4$ (c 1.06 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.68(6 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}), 2.86(3 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{NMe}), 3.22(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.45(1 \mathrm{H}$, dd, $J 11.1$ and $6.5, \mathrm{CHH}), 3.52(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.53(1 \mathrm{H}$, dd, $J 11.1$ and $5.5, \mathrm{CH} H), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.52(1 \mathrm{H}, \mathrm{d}, J 4.7$, NH), $6.04(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $0.9, \mathrm{CH}=), 6.57(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $6.9, \mathrm{CH}=), 6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.10-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; m / z (FAB-LRMS) $429\left(\mathrm{MH}^{+}\right), 154$ (base peak), 119 and 91.

Methyl (2E,4R,5R)-6-benzyloxy-4,5-[(2,4,6-trimethylphenyl-sulfonyl)epimino]hex-2-enoate 55

By use of a procedure identical with that described for the preparation of $\mathbf{3 1}$ from 30, the mixture of the vinylaziridines $\mathbf{5 2}$ and $53(1.27 \mathrm{~g}, 3.42 \mathrm{mmol})$ was converted into the cis- (E) enoate 55 [$(526 \mathrm{mg}, 1.23 \mathrm{mmol}, 36 \%$ (3 steps)] as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 430.1691. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$ requires $M+\mathrm{H}, 430.1688] ;[a]_{\mathrm{D}}^{24}-66.9\left(c 0.352\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.68(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.27(1 \mathrm{H}, \mathrm{m}, 5-$ H), $3.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.51(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.36(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CHH}), 4.41(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{CH} H), 6.08$ ($1 \mathrm{H}, \mathrm{dd}, J 15.6$ and $0.9, \mathrm{CH}=$), $6.67(1 \mathrm{H}$, dd, $J 15.6$ and 6.8 , $\mathrm{CH}=), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 7.13-7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FABLRMS) $430\left(\mathrm{MH}^{+}\right), 400,246,217,183,167$ (base peak), 119 and 91.

Mts-L-Val- $\psi[(\boldsymbol{E})-\mathrm{CH}=\mathrm{CH}]$-d-Phe-OMe 56 prepared from 10

To a stirred slurry of $\mathrm{CuCN}(154 \mathrm{mg}, 1.72 \mathrm{mmol})$ in $3 \mathrm{~cm}^{3}$ of dry THF under argon at $-78^{\circ} \mathrm{C}$ was added by syringe $1.37 \mathrm{~cm}^{3}$ $(1.72 \mathrm{mmol})$ of $1.25 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{BnMgCl}$ in THF, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for $15 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.211 \mathrm{~cm}^{3}, 1.72 \mathrm{mmol}\right)$ was added to the above mixture at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . A solution in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ of the crude mesyl compound 11, which was prepared from the cis- (E) enoate 10 ($151 \mathrm{mg}, 0.430 \mathrm{mmol}$) by the MSA treatment, was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min followed by quenching with $2 \mathrm{~cm}^{3}$ of a $1: 1$ saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}$ solution. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water and dried over MgSO_{4}. Concentration
under reduced pressure gave a colourless oil, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield $179 \mathrm{mg}(0.404 \mathrm{mmol}, 94 \%$ yield based on $\mathbf{1 0})$ of 56 as a colourless oil [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}, 442.2056$. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M-\mathrm{H}, 442.2052\right]$; $[a]_{\mathrm{D}}^{27}+14.3$ (c 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; \Delta \varepsilon+2.95\left(217 \mathrm{~nm}\right.$, isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.69(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe}), 0.72(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe}), 1.66(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.53(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.6 , $\mathrm{CHH}), 2.59(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.90(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.6, \mathrm{CH} H)$, $3.05(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $7.6,2-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.60$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.49(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}), 5.06(1 \mathrm{H}$, ddd, $J 15.5$, 7.6 and $1.5, \mathrm{CH}=)$, $5.35(1 \mathrm{H}$, ddd, $J 15.5,8.3$ and $1.1, \mathrm{CH}=)$, $6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.01-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (FABLRMS) $442\left[(\mathrm{M}-\mathrm{H})^{-}\right], 308$ (base peak), 198, 183, 153 and 151.

Mts-L-Val- $\boldsymbol{\mu}[(\boldsymbol{E})$-CH=CH]-L-Phe-OMe 57 prepared from 10

To a stirred solution of $\mathrm{CuCN}(358 \mathrm{mg}, 4 \mathrm{mmol})$ and $\mathrm{LiCl}(339$ $\mathrm{mg}, 8 \mathrm{mmol})$ in dry THF $\left(8 \mathrm{~cm}^{3}\right)$ under argon at $-78^{\circ} \mathrm{C}$ was added via syringe $7.27 \mathrm{~cm}^{3}(4 \mathrm{mmol})$ of $0.55 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BnMgCl}$ in THF, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for 15 min . A solution of the cis- (E) enoate $10(351 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF ($2 \mathrm{~cm}^{3}$) was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min followed by quenching with 5 cm^{3} of a $1: 1$ saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}$ solution. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water and dried over MgSO_{4}. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield 333 mg ($0.75 \mathrm{mmol}, 75 \%$) of 57 as colourless crystals, mp $85-87^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $67.65 ; \mathrm{H}, 7.53$; N, 3.08. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 67.69; H, 7.50; N, 3.16\%); [a] ${ }_{\mathrm{D}}^{26}$ -69.2 (c 0.697 in CHCl_{3}); $\Delta \varepsilon-11.09$ (219 nm, isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.74(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 0.79(3 \mathrm{H}, \mathrm{d}$, $J 6.9, \mathrm{CMe}), 1.69(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.52(1 \mathrm{H}$, dd, $J 13.5$ and 6.3, CHH), $2.62(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.87(1 \mathrm{H}, \mathrm{dd}$, $J 13.5$ and $8.6, \mathrm{CH} H), 3.07(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.43(1 \mathrm{H}, \mathrm{d}, J 7.9$, NH), $5.19(1 \mathrm{H}$, ddd, $J 15.5,7.3$ and $1.0, \mathrm{CH}=)$, $5.36(1 \mathrm{H}$, ddd, $J 15.5,7.6$ and 1.0 , $\mathrm{CH}=), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.04-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (FAB-LRMS) $442\left[(\mathrm{M}-\mathrm{H})^{-}\right], 308$ (base peak), 198, 183 and 153.

Mts-L-Val- $\boldsymbol{\mu}[(\boldsymbol{E})$-CH=CH]-L-Phe-OMe 57 prepared from 14

By use of a procedure similar to that described for the preparation of 56 from 11, the crude mesyl derivative 15, which was prepared from the trans-(E)-enoate $\mathbf{1 4}(120 \mathrm{mg}, 0.342 \mathrm{mmol})$ by MSA treatment, was converted into Mts-L-Val- $\psi[(E)$ -CH=CH]-L-Phe-OMe 57 ($135 \mathrm{mg}, 0.305 \mathrm{mmol}, 89 \%$ yield based on 14) by treatment with $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3}(1.37 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min .
Compound 57 , colourless crystals, $\mathrm{mp} 82^{\circ} \mathrm{C}$ [from n-hexane$\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, 67.77; H, 7.73; N, 3.07. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 67.69; H, 7.50; N, 3.16\%); [a] ${ }_{\mathrm{D}}^{19}$-64.8 (c 0.603 in $\left.\mathrm{CHCl}_{3}\right) ; \Delta \varepsilon-7.16$ (221 nm , isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $0.73(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 1.69(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.52(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 6.3 , $\mathrm{C} H \mathrm{H}), 2.62(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.86(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $8.6, \mathrm{CH} H)$, $3.07(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.45$ $(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{NH}), 5.19(1 \mathrm{H}, \mathrm{ddd}, J 15.5,7.6$ and $1.0, \mathrm{CH}=)$, $5.35(1 \mathrm{H}, \mathrm{ddd}, J 15.5,7.9$ and $1.0, \mathrm{CH}=), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 7.04-7.29 (5 H, m, Ph).

Mts-L-Val- $\boldsymbol{\psi}[(\boldsymbol{E})$-CH=CH]-d-Phe-OMe 56 prepared from 14

By use of a procedure similar to that described for the preparation of 57 from 10, the trans- (E)-enoate $14(56.2 \mathrm{mg}, 0.160$ $\mathrm{mmol})$ was converted into Mts-L-Val- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{d}-\mathrm{Phe}-$ OMe $56(54.4 \mathrm{mg}, 0.123 \mathrm{mmol}, 77 \%)$ as a colourless oil by
treatment with $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}(0.640 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min .
Compound 56, colourless oil [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}$, 442.2050. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M-\mathrm{H}, 442.2052\right] ;[a]_{\mathrm{D}}^{24}+16.8$ (c 2.22 in CHCl_{3}); $\Delta \varepsilon+4.21\left(214 \mathrm{~nm}\right.$, isooctane); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.69(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe}), 0.72(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CMe})$, $1.64(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.53(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.6, CHH$), 2.59(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.90(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.6 , $\mathrm{CH} H), 3.05(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $7.6,2-\mathrm{H}), 3.47(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.51(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{NH})$, $5.06(1 \mathrm{H}$, ddd, $J 15.5,7.6$ and $0.5, \mathrm{CH}=), 5.35(1 \mathrm{H}$, ddd, $J 15.5,8.3$ and 0.8 , $\mathrm{CH}=)$, $6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.01-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FABLRMS) $442\left[(\mathrm{M}-\mathrm{H})^{-}\right], 308,198,183,153$ and 151 (base peak).

Methyl (2E,4R,5R)-4-(methylsulfonyloxy)-6-phenyl-5-(2,4,6-tri-methylphenylsulfonylamino)hex-2-enoate 58

By use of a procedure similar to that described for the preparation of $\mathbf{1 1}$ from 10, the cis- (E)-enoate $31(42.3 \mathrm{mg}, 0.106$ mmol) was converted into the γ-mesyloxy- α, β-enoate $\mathbf{5 8}$ by treatment with MSA in CHCl_{3}.

Compound 58, colourless oil (crude), $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.43(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and 8.8, $\mathrm{C} H \mathrm{H}$), $3.03(1 \mathrm{H}, \mathrm{dd}, J 14.1$ and $6.2, \mathrm{CH} H), 3.07(3 \mathrm{H}, \mathrm{s}$, SMe), $3.69(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.88(1 \mathrm{H}, \mathrm{d}, J 7.3$, $\mathrm{NH}), 5.47(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $1.5, \mathrm{CH}=)$, $6.80(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.91(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $5.8, \mathrm{CH}=)$ and $6.94-$ 7.18 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FAB-LRMS) $496\left(\mathrm{MH}^{+}\right), 400,302,183$, 149 (base peak), 119 and 91.

Mts-d-Phe- $\mu[(E)$-CH=CH]-L-Leu-OMe 59

By use of a procedure similar to that described for the preparation of 56 from 11, the crude mesyl derivative 58, which was prepared from the cis- (E)-enoate $31(42.3 \mathrm{mg}, 0.106 \mathrm{mmol})$, was converted into Mts-d-Phe- $\psi[(E)$-CH=CH]-L-Leu-OMe 59 (41.7 $\mathrm{mg}, 0.091 \mathrm{mmol}, 86 \%$ yield based on 31) by treatment with $\mathrm{Bu}{ }^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3}(0.424 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min.

Compound 59, colourless crystals, $\mathrm{mp} 74-75^{\circ} \mathrm{C}$ [from n -hexane- $\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, 67.95; H, 7.63; N, 2.86. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $\left.68.24 ; \mathrm{H}, 7.71 ; \mathrm{N}, 3.06 \%\right) ;[\alpha]_{D}^{18}-11.2(c$ 0.624 in CHCl_{3}); $\Delta \varepsilon-5.97$ (221 nm , isooctane); $\delta_{\mathrm{H}}[270 \mathrm{MHz}$; CDCl_{3} containing tris- $\{3$-[heptafluoropropyl(hydroxy)methyl-ene]- d-camphorato\}europium(III)] 0.77 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}$), $0.81(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CMe}), 1.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 1.29(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} H), 1.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.54(6 \mathrm{H}, \mathrm{s}$, CMe), $2.77(1 \mathrm{H}$, dd, $J 13.5$ and $7.3, \mathrm{C} H \mathrm{H}), 2.85(1 \mathrm{H}$, dd, $J 13.5$ and $6.3, \mathrm{CH} H), 2.99(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $7.6,2-\mathrm{H}), 3.72$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.98(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{NH}), 5.36$ (1 H , dd, $J 15.7$ and $5.9, \mathrm{CH}=$), $5.42(1 \mathrm{H}$, dd, $J 15.7$ and 7.8 , $\mathrm{CH}=), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.02-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / z$ (FABLRMS) $480\left(\mathrm{MNa}^{+}\right), 458\left(\mathrm{MH}^{+}\right), 456\left(\mathrm{MH}^{-}\right), 398$ (base peak), 366, 259, 227, 199, 183, 129, 119 and 91.

Mts-d-Phe- $\boldsymbol{\psi}[(\boldsymbol{E})$-CH=CH]-d-Leu-OMe 60

By use of a procedure similar to that described for the preparation of 57 from $\mathbf{1 0}$, the cis- (E)-enoate 31 ($53.3 \mathrm{mg}, 0.133$ $\mathrm{mmol})$ was converted into Mts-d-Phe- $\mu[(E)-\mathrm{CH}=\mathrm{CH}]$-d-LeuOMe $60(56.0 \mathrm{mg}, 0.122 \mathrm{mmol}, 92 \%)$ by treatment with $\mathrm{Bu}{ }^{i} \mathrm{Cu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}(0.534 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min.

Compound 60, colourless crystals, mp 109-110 ${ }^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, 67.97; H, 7.70; N, 3.06. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 68.24; H, 7.71; N, 3.06\%); $[a]_{\mathrm{D}}^{18}+56.0$ (c 0.603 in $\left.\mathrm{CHCl}_{3}\right) ; \Delta \varepsilon+5.64$ (216 nm , isooctane); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CMe}), 0.83(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CMe})$, $1.14(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}), 1.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 1.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.50(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.80\left(2 \mathrm{H}, \mathrm{d}, J 6.6,6-\mathrm{H}_{2}\right)$,
$2.89(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $7.6,2-\mathrm{H}), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NH}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 7.6, CH=), $5.35(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $6.6, \mathrm{CH}=), 6.88(2 \mathrm{H}, \mathrm{s}$, ArH) and $7.00-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) 480 $\left(\mathrm{MNa}^{+}\right), 458\left(\mathrm{MH}^{+}\right), 456\left(\mathrm{MH}^{-}\right), 398$ (base peak), 366, 259, 227, 199, 183, 129, 119 and 91.

Benzyl (2E,4S,5S)-7-methyl-4-(methylsulfonyloxy)-5-(2,4,6-tri-methylphenylsulfonylamino)oct-2-enoate 61

By use of a procedure similar to that described for the preparation of $\mathbf{1 1}$ from 10, the cis- (E)-enoate $\mathbf{3 6}(94.9 \mathrm{mg}, 0.215$ mmol) was converted into the γ-mesyloxy- α, β-enoate $\mathbf{6 1}$ by treatment with MSA in CHCl_{3}.

Compound 61, colourless oil (crude), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $0.64(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}), 0.82(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CMe}), 1.24(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 1.43(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.62(6 \mathrm{H}, \mathrm{s}$, CMe), 3.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), $3.59(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 8.6$, NH), $5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{dd}$, $J 15.8$ and 1.7, CH=), $6.82(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $5.9, \mathrm{CH}=), 6.93$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) 538 $\left(\mathrm{MH}^{+}\right), 536\left(\mathrm{MH}^{-}\right), 442,352$ (base peak), 268, 183, 152, 119 and 91 .

Mts-L-Leu- $\psi[(\boldsymbol{E})$-CH=CH]-d-Phe-OBn 62

By use of a procedure similar to that described for the preparation of 56 from 11, the crude mesyl derivative 61, which was prepared from the cis-(E)-enoate $36(94.9 \mathrm{mg}, 0.215 \mathrm{mmol})$, was converted into Mts-L-Leu- $\psi[(E)$-CH=CH]-d-Phe-OBn 62 (103 $\mathrm{mg}, 0.192 \mathrm{mmol}, 89 \%$ yield based on 36) by treatment with $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot \mathrm{BF}_{3}(0.860 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min .

Compound 62, colourless crystals, $\mathrm{mp} 81^{\circ} \mathrm{C}$ [from n-hexane$\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 71.97; H, 7.43; N, 2.38. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $72.01 ; \mathrm{H}, 7.36 ; \mathrm{N}, 2.62 \%)$; $[a]_{\mathrm{D}}^{28} 0\left(c 2.682\right.$ in CHCl_{3}); $\Delta \varepsilon+2.74\left(210 \mathrm{~nm}\right.$, isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.74(3 \mathrm{H}$, d, J 6.3, CMe), 0.76 ($3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CMe}$), $1.20\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $1.35(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.52(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $7.3, \mathrm{CHH}), 2.57(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.88(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 8.3 , $\mathrm{CH} H), 3.10(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $7.6,2-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $4.29(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.05(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 7.3, $\mathrm{CH}=), 5.42(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $8.2, \mathrm{CH}=), 6.89(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH})$ and 6.99-7.35 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Mts-L-Leu- $\psi[(\boldsymbol{E})$-CH=CH]-L-Phe-OBn 63

By use of a procedure similar to that described for the preparation of $\mathbf{5 7}$ from 10, the cis- (E)-enoate $36(71.3 \mathrm{mg}, 0.161$ $\mathrm{mmol})$ was converted into Mts-L-Leu- $\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{L}-\mathrm{Phe}-$ OBn 63 ($78.6 \mathrm{mg}, 0.147 \mathrm{mmol}, 91 \%$) by treatment with $\mathrm{BnCu}(\mathrm{CN}) \mathrm{MgCl} \cdot 2 \mathrm{LiCl}(0.646 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 \min.

Compound 63, colourless crystals, mp 102-104 ${ }^{\circ} \mathrm{C}$ [from EtOAc-Et E_{2} (1:5)] (Found: C, 71.71; H, 7.32; N, 2.41. $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $72.01 ; \mathrm{H}, 7.36 ; \mathrm{N}, 2.62 \%$); $[a]_{\mathrm{D}}^{29}-0.392$ (c 2.04 in CHCl_{3}); $\Delta \varepsilon-1.11$ (214 nm , isooctane); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{CMe}), 0.78(3 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{CMe})$, $1.24\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.47(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.99(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.53(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $6.1, \mathrm{C} H \mathrm{H}), 2.60(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.87$ $(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $9.1, \mathrm{CH} H), 3.09(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.71(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{NH}), 4.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.15$ $(1 \mathrm{H}$, ddd, $J 15.5,7.6$ and $0.7, \mathrm{CH}=)$, $5.41(1 \mathrm{H}$, ddd, $J 15.5,8.2$ and $0.7, \mathrm{CH}=), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.01-7.33(10 \mathrm{H}, \mathrm{m}$, Ph).

Benzyl (2E,4S,5S)-9-[(2-chlorophenyl)methoxycarbonylamino]-4-(methylsulfonyloxy)-5-(2,4,6-trimethylphenylsulfonylamino)-non-2-enoate 64

By use of a procedure similar to that described for the preparation of $\mathbf{1 1}$ from 10, the cis- (E)-enoate $\mathbf{4 4}(678 \mathrm{mg}, 1.08 \mathrm{mmol})$
was converted into the γ-mesyloxy- α, β-enoate $\mathbf{6 4}$ by treatment with MSA in CHCl_{3}.

Compound 64, colourless oil (crude), $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH})$, 1.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$), 2.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.60 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.51(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{NH}), 5.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.17(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.56(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{NH}), 6.02(1 \mathrm{H}$, dd, $J 15.7$ and $1.4, \mathrm{CH}=), 6.83(1 \mathrm{H}$, dd, $J 15.7$ and 5.5 , $\mathrm{CH}=), 6.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.24-7.44(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ (FAB-LRMS) $721\left(\mathrm{MH}^{+}\right), 625$ (base peak), 307, 289, 252, 208, 119 and 91.

Mts-L-Lys(Cl-Z)- $\boldsymbol{\mu}[(\boldsymbol{E})$-CH=CH]-d-Ala-OBn 65

To a stirred slurry of $\mathrm{CuCN}(390 \mathrm{mg}, 4.34 \mathrm{mmol})$ in $12 \mathrm{~cm}^{3}$ of dry THF under argon at $-78{ }^{\circ} \mathrm{C}$ was added by syringe $2.89 \mathrm{~cm}^{3}$ (4.34 mmol) of $1.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MeLi} \cdot \mathrm{LiBr}$ in $\mathrm{Et}_{2} \mathrm{O}$, and the mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and was stirred at this temperature for $15 \mathrm{~min} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.533 \mathrm{~cm}^{3}, 4.34 \mathrm{mmol}\right)$ was added to the above mixture at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . A solution in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ of the crude mesyl compound 64, which was prepared from the $c i s-(E)$-enoate 44 (678 $\mathrm{mg}, 1.08 \mathrm{mmol}$), was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min followed by quenching with $6 \mathrm{~cm}^{3}$ of a $1: 1$ saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}$ solution. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water and dried over MgSO_{4}. Concentration under reduced pressure gave a colourless oil, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield $502 \mathrm{mg}(0.782 \mathrm{mmol}$, 72% yield based on 44) of compound 65 as a colourless oil, [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}$, $639.2300 . \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $M-\mathrm{H}, 639.2295] ;[a]_{\mathrm{D}}^{19}-5.64\left(c 2.20\right.$ in CHCl_{3}); $\Delta \varepsilon+2.83(223$ nm , isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01(3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CMe})$, $1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.89(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.69(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH}), 4.88(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.07(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 5.12(1 \mathrm{H}$, ddd, $J 15.5,7.3$ and $1.5, \mathrm{CH}=), 5.21(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $6.9, \mathrm{CH}=), 6.88(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 7.22-7.44 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (FAB-LRMS) 639 [(M - H) ${ }^{-}$], 497, 471, 305, 198, 183, 168, 153, 151 and 122 (base peak).

Mts-L-Lys(Cl-Z)- $\boldsymbol{\mu}[(\boldsymbol{E})-\mathrm{CH}=\mathbf{C H}]-\mathrm{L}-\mathrm{Ala}-\mathrm{OBn} 66$

To a stirred solution of $\mathrm{CuCN}(32.3 \mathrm{mg}, 0.359 \mathrm{mmol})$ and LiCl ($30.4 \mathrm{mg}, 0.718 \mathrm{mmol}$) in dry THF ($1 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$ was added via syringe $0.240 \mathrm{~cm}^{3}(0.359 \mathrm{mmol})$ of 1.5 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{MeLi} \cdot \mathrm{LiBr}$ in THF, and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for 15 min . A solution of the cis-(E)-enoate $\mathbf{4 4}(56.1 \mathrm{mg}, 0.0897 \mathrm{mmol})$ in dry THF ($1 \mathrm{~cm}^{3}$) was added dropwise to the above reagent at $-78^{\circ} \mathrm{C}$ with stirring, and the stirring was continued for 30 min followed by quenching with $1 \mathrm{~cm}^{3}$ of a $1: 1$ saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}-28 \% \mathrm{NH}_{4} \mathrm{OH}$ solution. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water and dried over MgSO_{4}. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc ($3: 1$) to yield $55.8 \mathrm{mg}(0.0870 \mathrm{mmol}$, 97%) of compound 66 as a colourless oil, [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}, \quad 639.2292 . \quad \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S} \quad$ requires $\quad M-\mathrm{H}$, 639.2296]; [$\alpha]_{\mathrm{D}}^{21}-14.1$ ($c 1.34$ in CHCl_{3}); $\Delta \varepsilon-6.00$ (216 nm , isooctane); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CMe}), 1.26$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.59$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.89(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.66(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH}), 4.82(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 5.05(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 5.13(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $7.6, \mathrm{CH}=), 5.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $5.36(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $7.6, \mathrm{CH}=), 6.89(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 7.23-7.45 (9 H, m, ArH); m/z (FAB-LRMS) 639 [(M - H) ${ }^{-}$], 497, 471, 310, 305 (base peak), 198, 183, 168, 153 and 122.

6-Benzyloxy-(2E,4S,5S)- N-methyl-4-(methylsulfonyloxy)-5-

 (2,4,6-trimethylphenylsulfonylamino)hex-2-enamide 67By use of a procedure similar to that described for the preparation of $\mathbf{1 1}$ from 10, the $c i s$ - (E)-enamide $54(85 \mathrm{mg}, 0.198$ mmol) was converted into the crude γ-mesyloxy- α, β-enamide 67 (colourless oil) by treatment with MSA in CHCl_{3}.

Compound 67, colourless oil (crude), $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.85(3 \mathrm{H}, \mathrm{d}, J 4.9$, NMe), 3.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 3.26 (1 H , dd, $J 9.7$ and 5.2, CHH), $3.46(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $4.0, \mathrm{CH} H), 3.52(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.20$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.32(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{NH}), 5.76$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH}), 6.07(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and 1.2, $\mathrm{CH}=), 6.62$ $(1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $6.5, \mathrm{CH}=), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.19-7.36$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FAB-LRMS) $525\left(\mathrm{MH}^{+}\right), 475$ (base peak), 429, 391, 279, 167, 149, 119 and 91.

Mts-L-Ser($\boldsymbol{O}-\mathrm{Bn})-\psi[(\boldsymbol{E})$-CH=CH]-d-Ala-NHMe 68

By use of a procedure identical with that described for the preparation of 65 from 64, the above crude mesyl compound 67, which was prepared from the $c i s-(E)$-enamide $54(85 \mathrm{mg}$, $0.198 \mathrm{mmol})$, was converted into Mts-L-Ser $(O-\mathrm{Bn})-\psi[(E)-$ CH=CH]-d-Ala-NHMe 68 ($79 \mathrm{mg}, 0.178 \mathrm{mmol}, 90 \%$ based on 54) by treatment with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr}^{2} \cdot \mathrm{BF}_{3}(0.792 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min .

Compound 68, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 445.2156. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 445.2161\right]$; $[a]_{\mathrm{D}}^{21}-29.7$ (c 1.04 in $\left.\mathrm{CHCl}_{3}\right) ; \Delta \varepsilon+0.945\left(221 \mathrm{~nm}\right.$, isooctane); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CMe}), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.57(6 \mathrm{H}$, s, CMe), $2.74(3 \mathrm{H}, \mathrm{d}, J 4.7, \mathrm{NMe}), 2.89(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.39$ $\left(2 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{CH}_{2}\right), 3.69(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.41\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.20$ $(1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{NH}), 5.50(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $7.0, \mathrm{CH}=), 5.58$ ($1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $7.6, \mathrm{CH}=$), $6.35(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH}), 6.93$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$) and 7.19-7.36 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FAB-LRMS) $445\left(\mathrm{MH}^{+}\right), 246,167$ (base peak), 149, 119 and 91.

Mts-L-Ser(O-Bn)- $\boldsymbol{\psi}[(\boldsymbol{E})$-CH=CH]-L-Ala-NHMe 69

By use of a procedure identical with that described for the preparation of $\mathbf{6 6}$ from $\mathbf{4 4}$, the cis- (E)-enamide 54 ($39 \mathrm{mg}, 0.091$ $\mathrm{mmol})$ was converted into Mts-L-Ser $(O-\mathrm{Bn})-\psi[(E)-\mathrm{CH}=\mathrm{CH}]-\mathrm{L}-$ Ala-NHMe 69 ($35 \mathrm{mg}, 0.079 \mathrm{mmol}, 87 \%$) by treatment with $\mathrm{MeCu}(\mathrm{CN}) \mathrm{Li} \cdot \mathrm{LiBr} \cdot \mathrm{BF}_{3}(0.364 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$ for 30 min.

Compound 69, colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 445.2165. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 445.2161\right]$; $[a]_{\mathrm{D}}^{21}-35.1$ (c 2.71 in CHCl_{3}); $\Delta \varepsilon-6.96$ (208 nm , isooctane); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.21(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CMe}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.57(6 \mathrm{H}$, s, CMe), 2.71 ($3 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{NMe}$), $2.88(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.37$ $(1 \mathrm{H}, \mathrm{d}, J 1.3, \mathrm{C} H \mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} H), 3.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{d}, J 4.7, \mathrm{NH})$, $5.47(1 \mathrm{H}$, ddd, $J 15.6,7.2$ and $1.0, \mathrm{CH}=)$, $5.75(1 \mathrm{H}$, ddd, $J 15.6,7.5$ and 0.9 , $\mathrm{CH}=), 6.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH}), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.18-7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (FAB-LRMS) $445\left(\mathrm{MH}^{+}\right)$, 246, 167 (base peak), 156, 149, 119 and 91.

Methyl (2E,4S,5S)-6-benzyloxy-4-trifluoroacetoxy-5-(2,4,6-trimethylphenylsulfonylamino)hex-2-enoate 70

By use of a procedure identical with that described for the preparation of $\mathbf{1 2}$ from 10, the cis-(E)-enoate $55(143 \mathrm{mg}, 0.332$ mmol) was converted into the crude trifluoroacetate 70 as a colourless oil, (crude), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 2.57 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 3.34 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.73 ($3 \mathrm{H}, \mathrm{s}$, OMe), $3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.32(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, $5.75(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $0.9, \mathrm{CH}=), 6.65$ $(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $5.9, \mathrm{CH}=), 6.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.03-7.41$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB-LRMS) $566\left(\mathrm{MNa}^{+}\right), 544\left(\mathrm{MH}^{+}\right), 470$, 452, 448, 430, 398, 332, 242 (base peak), 183, 157, 129, 119 and 91 .

Methyl (2E,4S,5S)-6-benzyloxy-4-hydroxy-5-(2,4,6-trimethyl-phenylsulfonylamino)hex-2-enoate 71
Purification of the above crude trifluoroacetate 70 by flash chromatography over silica gel with n-hexane-EtOAc (4:1) afforded the hydrolysate $71(106 \mathrm{mg}, 0.236 \mathrm{mmol}, 71 \%$ yield based on 55) as a colourless oil, [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 446.1653. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 446.1638\right]$; $[a]_{\mathrm{D}}^{28}-36.4$ (c 0.0714 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.53(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.55(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.74$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.80 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.97(1 \mathrm{H}, \mathrm{d}, J 8.8,4-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 10.2$, NH), 4.58 ($1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{CHH}$), 4.68 ($1 \mathrm{H}, \mathrm{d}, J 13.8$, CHH), $5.84(1 \mathrm{H}, \mathrm{dd}, J 15.8$ and $0.6, \mathrm{CH}=), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.12$ ($1 \mathrm{H}, \mathrm{dd}, J 15.8$ and 8.7, $\mathrm{CH}=$) and $7.01-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (FAB-LRMS) $446\left(\mathrm{MH}^{-}\right), 428,306,239$ (base peak), 199, 183, 168,153 and 122.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (B) and (C) from the Ministry of Education, Science, Sports and Culture, Japan and the Japan Health Science Foundation. We are grateful to Dr Terrence R. Burke, Jr., NCI, NIH, for helpful discussions during the preparation of this manuscript.

References

1 J. S. Kaltenbronn, J. P. Hudspeth, E. A. Lunney, B. M. Michniewicz, E. D. Nicolaides, J. T. Repine, W. H. Roark, M. A. Steir, F. J. Tinney, P. K. W. Woo and A. D. Essenburg, J. Med. Chem., 1990, 33, 838; D. Tourwe, J. Couder, M. Ceusters, D. Meert, T. F. Burks, T. H. Kramer, P. Davis, R. Knapp, H. I. Yamamura, J. E. Leysen and G. van Binst, Int. J. Pept. Protein Res., 1992, 39, 131; for a review of syntheses of (E)-alkene dipeptide isosteres up to May 1992, see: T. Ibuka, J. Synth. Org. Chem. Jpn., 1992, 50, 953; R. B. Gardner, G.-B. Liang and S. H. Gellman, J. Am. Chem. Soc., 1995, 117, 3280; U. Schopfer, M. Stahl, T. Brandl and R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 1997, 36, 1745; P. Wipf, T. C. Henninger and S. J. Geib, J. Org. Chem., 1998, 63, 6088.

2 M. Wada, R. Doi, R. Hosotani, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, Pancreas, 1995, 10, 31; K. Fujimoto, R. Doi, R. Hosotani, M. Wada, J.-U. Lee, T. Koshiba, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, Life Sci., 1997, 60, 29; K. Miyasaka, S. Kanai, M. Masuda, T. Ibuka, K. Nakai, N. Fujii and A. Funakoshi, J. Auton. Nerv. Syst., 1997, 63, 179.
3 T. E. Christos, A. Arvanitis, G. A. Cain, A. L. Johnson, R. S. Pottorf, S. W. Tam and W. K. Schmidt, Bioorg. Med. Chem. Lett., 1993, 3, 1035; B. Beresis and J. S. Panek, Bioorg. Med. Chem. Lett., 1993, 3, 1609; J. S. Wai, D. L. Smith, J. B. Gibbs, S. D. Mosser, A. I. Oliff, D. L. Pompliano, E. Rands and N. E. Kohl, Bioorg. Med. Chem., 1994, 2, 939; P. A. Bartlett and A. Otake, J. Org. Chem., 1995, 60, 3107.
4 T. Ibuka, N. Mimura, H. Aoyama, M. Akaji, H. Ohno, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii and Y. Yamamoto, J. Org. Chem., 1997, 62, 999; T. Ibuka, N. Mimura, H. Ohno, K. Nakai, M. Akaji, H. Habashita, H. Tamamura, Y. Miwa, T. Taga, N. Fujii and Y. Yamamoto, J. Org. Chem., 1997, 62, 2982.

5 T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, N. Fujii, N. Mimura, Y. Miwa, T. Taga and Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1994, 33, 652; P. Wipf and P. C. Fritch, J. Org. Chem., 1994, 59, 4875; N. Fujii, K. Nakai, H. Tamamura, A. Otaka, N. Mimura, Y. Miwa, T. Taga, Y. Yamamoto and T. Ibuka, J. Chem. Soc., Perkin Trans. 1, 1995, 1359; P. Wipf and T. Henninger, J. Org. Chem., 1997, 62, 1586.
6 T. Ibuka, H. Habashita, S. Funakoshi, N. Fujii, K. Baba, M. Kozawa, Y. Oguchi, T. Uyehara and Y. Yamamoto, Tetrahedron: Asymmetry, 1990, 1, 389; T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1991, 56, 4370; T. Ibuka, T. Taga, H. Habashita, K. Nakai, H. Tamamura, N. Fujii, Y. Chounan, H. Nemoto and Y. Yamamoto, J. Org. Chem., 1993, 58, 1207; M. J. Daly, R. A. Ward, D. F. Thompson and G. Procter, Tetrahedron Lett., 1995, 36, 7545.

7 A preliminary communication of this work has appeared: H . Tamamura, M. Yamashita, H. Muramatsu, H. Ohno, T. Ibuka, A. Otaka and N. Fujii, Chem. Commun., 1997, 2327.
8 M. E. Duggan and D. S. Karanewsky, Tetrahedron Lett., 1983, 24, 2935; S. Itsuno, K. Tanaka and K. Ito, Chem. Lett., 1986, 1133; D. Tanner and P. Somfai, Tetrahedron Lett., 1987, 28, 1211; S.

Matsubara, T. Kodama and K. Utimoto, Tetrahedron Lett., 1990, 31, 6379; J. Legters, J. G. H. Willems, L. Thijs and B. Zwanenburg, Recl. Trav. Chim. Pays-Bas, 1992, 111, 59; D. Tanner, H. M. He and P. Somfai, Tetrahedron, 1992, 48, 6069; T. Kawabata, Y. Kiryu, Y. Sugiura and K. Fuji, Tetrahedron Lett., 1993, 34, 5127; N. J. Church and D. W. Young, Tetrahedron Lett., 1995, 36, 151 and references cited; B. G. M. Burgaud, D. C. Horwell, A. Padova and M. C. Pritchard, Tetrahedron, 1996, 52, 13035; C. M. Rayner, Synlett, 1997, 11; H. Ohno, N. Mimura, A. Otaka, H. Tamamura, N. Fujii, T. Ibuka, I. Shimizu, A. Satake and Y. Yamamoto, Tetrahedron, 1997, 53, 12933; A. A. Cantrill, H. M. I. Osborn and J. Sweeney, Tetrahedron, 1998, 54, 2181; I. Fleming, J. Frackenpohl and H. Ila, J. Chem. Soc., Perkin Trans. 1, 1998, 1229.
9 A. Bongini, G. Cardillo, M. Orena, S. Sandri and C. Tomasini, J. Chem. Soc., Perkin Trans. 1, 1986, 1339, 1345.

10 (a) D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson and D. M. Barnes, J. Am. Chem. Soc., 1993, 115, 5328; I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, J. Chem. Soc., Perkin Trans.

1, 1995, 2739; (b) F. A. Davis and G. V. Reddy, Tetrahedron Lett., 1996, 37, 4349.
11 F. A. Davis and P. Zhou, Tetrahedron Lett., 1994, 35, 7525.
12 G. E. Ham, J. Org. Chem., 1964, 29, 3052.
13 O. Mitsunobu, Synthesis, 1981, 1.
14 P. Herold, Helv. Chim. Acta, 1988, 71, 354; T. Hudlicky, T. Nugent and W. Griffith, J. Org. Chem., 1994, 59, 7944; H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh and M. Shibasaki, J. Org. Chem., 1995, 60, 7388; A. Dondoni, D. Perrone and E. Turturici, J. Chem. Soc., Perkin Trans. 1, 1997, 2389; P. Spanu, G. Rassu, L. Pinna, L. Battistini and G. Casiraghi, Tetrahedron: Asymmetry, 1997, 8, 3237; A. Tarnowski, T. Bar and R. R. Schmidt, Bioorg. Med. Chem. Lett., 1997, 7, 573; S. Kobayashi, T. Furuta, T. Hayashi, M. Nishijima and K. Hanada, J. Am. Chem. Soc., 1998, 120, 908; R. V. Hoffman and J. Tao, J. Org. Chem., 1998, 63, 3979.

